Песочница

весёлый усач 19 марта 2011 в 23:16

Чем Linux отличается от UNIX, и что такое UNIX-подобная ОС?

  • Чулан *
UNIX
UNIX (не стоит путать с определением «UNIX-подобная операционная система») - семейство операционных систем (Mac OS X, GNU/Linux).
Первая система была разработана в 1969 в Bell Laboratories, бывшей американской корпорации.

Отличительные особенности UNIX:

  1. Простое конфигурирование системы путем использования простых, обычно текстовых, файлов.
  2. Широкое использование командной строки.
  3. Использование конвейеров.
В наше время UNIX используют в основном на серверах, и как систему для оборудования.
Нельзя не отметить огромную историческую важность UNIX систем. В настоящее время они признаны одними из самых исторически важных ОС. В ходе разработки UNIX систем был создан язык Си.

Варианты UNIX по годам

UNIX-подобная ОС
UNIX-подобная ОС (иногда используют сокращение *nix) - система, образованная под влиянием UNIX.

Слово UNIX используется как знак соответствия и как торговая марка.

Консорциум The Open Group обладает торговой маркой «UNIX», но наиболее известен как сертифицирующий орган для торговой марки UNIX. Недавно на The Open Group был пролит свет в связи с публикацией спецификации «Single UNIX Specification», стандартов которым должна удовлетворять ОС чтобы гордо называться Unix.

Вы можете взглянуть на генеалогическое древо UNIX-подобных операционных систем.

Linux
Linux - общее название UNIX-пободных операционных систем, которые разработаны в рамках проекта GNU (проект по разработке СПО). Linux работает на огромном множестве архитектур процессора, начиная от ARM заканчивая Intel x86.

Наиболее известными и распространенными дистрибутивами являются Arch Linux, CentOS, Debian. Также существует много «отечественных», российских дистрибутивов - ALT Linux, ASPLinux и другие.

Возникает довольно много споров об именовании GNU/Linux.
Сторонники «open source» используют термин «Linux», а сторонники «free software» - «GNU/Linux». Я предпочитаю первый вариант. Иногда для удобства представления термина GNU/Linux используют написания «GNU+Linux», «GNU-Linux», «GNU Linux».

В отличие от коммерческих систем (MS Windows, Mac OS X) Linux не имеет географического центра разработки и определенной организации, которая владела бы системой. Сама система и программы для нее - результат работы огромных сообществ, тысяч проектов. Присоединиться к проекту или создать свой может каждый!

Вывод
Таким образом у нас поучилась цепочка: UNIX -> UNIX-подобная ОС -> Linux.

Подводя итог, я могу сказать, что отличия между Linux и UNIX очевидны. UNIX - намного более широкое понятие, фундамент для построения и сертификации всех UNIX-подобных систем, а Linux - частный случай UNIX.

Теги: unix, linux, nix, линукс, юникс

Данная статья не подлежит комментированию, поскольку её автор ещё не является

История UNIX® начинается в 1969 г. Большинство современных UNIX-систем являются коммерческими версиями исходных дистрибутивов UNIX. Solaris от Sun, HP-UX Hewlett-Packard, AIX® от IBM являются лучшими представителями UNIX, которые, кроме того, имеют свои собственные уникальные элементы и свои собственные фундаментальные решения. Например, Sun Solaris - это UNIX, но, кроме того, она содержит много инструментов и расширений, разработанных специально в расчете на рабочие станции и серверы производства Sun.

Linux® был разработан в попытке создать бесплатную альтернативу коммерческим UNIX-средам. Его история начинается в 1991 или даже в 1983 гг., когда был создан проект GNU, чьей исходной целью было предоставить бесплатную альтернативу UNIX. Linux работает на гораздо большем количестве платформ, например на Intel®/AMD x86. Большинство ОС UNIX способны работать только на одной платформе.

У Linux и UNIX общие исторические корни, но есть и серьезные отличия. Много инструментов, утилит, и бесплатных приложений, являющихся стандартными для Linux, первоначально задумывались как бесплатная альтернатива программам для UNIX. Linux часто предоставляет поддержку множества опций и приложений, заимствуя лучшую или наиболее популярную функциональность из UNIX.

Администратор или разработчик, который привык работать с Linux, система UNIX может показаться не очень удобной для использования. С другой стороны, фундамент UNIX-подобной операционной системы (инструменты, файловая система, интерфейсы API) достаточно стандартизирован. Однако некоторые детали систем могут иметь существенные различия. Далее в статье будут рассмотрены эти различия.

Технические различия

Разработчики коммерческих дистрибутивов UNIX рассчитывают на определенный круг клиентов и серверную платформу для своей операционной системы. Они хорошо представляют, какую поддержку и оптимизацию каких приложений нужно реализовать. Производители UNIX делают все возможное для обеспечения совместимости между различными версиями. Кроме того, они опубликовали стандарты своих ОС.

Разработка GNU/Linux, с другой стороны, не ориентирована на конкретные платформы и круг клиентов и разработчики GNU/Linux имеют различные опыт и взгляды. В Linux-сообществе не существует строгого стандартного набора инструментов или сред. Для решения этой проблемы был запущен проект Linux Standards Base (LSB), но он оказался не столь результативным, как хотелось бы.

Эта недостаточная стандартизованность приводит к значительным несогласованностям внутри Linux. Для некоторых разработчиков возможность использовать лучшие достижения других операционных систем является плюсом, однако не всегда удобно копирование в Linux элементов UNIX, например, когда имена устройств внутри Linux могут быть взяты из AIX, тогда как инструменты для работы с файловой системой ориентированы на HP-UX. Несовместимости такого рода встречаются также между различными дистрибутивами Linux. Например, Gentoo и RedHat реализуют различные методы обновлений.

Для сравнения - каждый новый релиз UNIX-системы выходит с хорошо документированным описанием новых особенностей и изменений UNIX. Команды, инструменты и другие элементы редко меняются, и часто те же аргументы командной строки для приложений остаются неизменными на протяжении многих версий этого программного обеспечения. Когда же происходят значительные изменения в этих элементах, поставщики коммерческих UNIX-систем часто предоставляют оболочку, необходимую для обеспечения совместимости с ранними версиями этого инструмента.

Подобная совместимость означает, что утилиты и приложения могут использоваться на новых версиях операционных систем без проверки и изменения их исходного кода. Поэтому переход на новую версию UNIX, в которой обычно нет принципиальных отличий от старой версии, для пользователей или администраторов связан с намного меньшими усилиями, чем переход с одного дистрибутива Linux на другой.

Архитектура аппаратного обеспечения

Большинство коммерческих версий UNIX созданы для одного или небольшого количества архитектур аппаратного обеспечения. HP-UX работает только на платформах PA-RISC и Itanium, Solaris - на SPARC и x86, а AIX предназначен только для процессоров POWER.

Благодаря этим ограничениям, UNIX-производители могут относительно свободно модифицировать свой код для этих архитектур и использовать любое преимущество своей архитектуры. Поскольку они прекрасно знают поддерживаемые ими устройства, то их драйверы работают лучше, и им не нужно учитывать ограничения BIOS, характерные для ПК.

Linux, с другой стороны, исторически разрабатывался для обеспечения максимальной совместимости. Linux доступен на различных архитектурах, а число устройств ввода/вывода и прочей периферии, которая может использоваться с этой ОС, почти безгранично. Разработчики не могут заранее знать, какое конкретное оборудование будет установлено в компьютере, и часто не могут обеспечить его эффективное использование. Одним из примеров является управление памятью на Linux. Ранее Linux использовал сегментную модель памяти, первоначально разработанную для x86. Сейчас он адаптирован для использования страничной памяти, но все еще сохраняет некоторые требования к сегментной памяти, что вызывает проблемы, если архитектура не поддерживает сегментированную память. Это не является проблемой для UNIX-производителей. Они точно знают, на каком оборудовании будет работать их UNIX.

Ядро

Ядро является сердцем операционной системы. Исходный код ядра коммерческих дистрибутивов UNIX является собственностью их разработчиков и не распространяется за пределы компании. Полностью противоположная ситуация с Linux. Процедуры для компиляции и исправления ядер и драйверов весьма различны. Для Linux и других операционных систем с открытым исходным кодом патч может быть выпущен в виде исходного кода, и конечный пользователь может установить, проверить и даже модифицировать его. Эти патчи обычно проверены не так тщательно как патчи от поставщиков коммерческих ОС UNIX. Поскольку нет полного списка приложений и сред, которые должны быть оттестированы для корректной работы на Linux, Linux-разработчики зависят от конечных пользователей и других разработчиков, которые будут отлавливать ошибки.

Поставщики коммерческих UNIX-дистрибутивов выпускают ядра только в виде исполняемого кода. Некоторые релизы являются монолитными, тогда как другие позволяют обновить только какой-нибудь конкретный модуль ядра. Но в любом случае этот релиз предоставляется только в форме исполняемого кода. Если необходимо обновление, администратор должен ждать, пока производитель выпустит патч в бинарном коде, однако его может утешить то, что производитель выполнит тщательную проверку своего патча на обратную совместимость.

Все коммерческие версии UNIX в некоторой степени эволюционировали до модульного ядра. Драйверы и отдельные особенности ОС доступны как отдельные компоненты и могут быть по необходимости загружены или выгружены из ядра. Но открытая модульная архитектура Linux гораздо гибче. Однако гибкость и адаптируемость Linux означают и постоянное изменение. Исходный код Linux постоянно меняется, и, по прихоти разработчика, может поменяться API. Когда модуль или драйвер написан для коммерческой версии UNIX, он проработает гораздо дольше, чем тот же драйвер для Linux.

Поддержка файловой системы

Одной из причин, благодаря которой Linux стал достаточно мощной ОС, является его широкая совместимость с другими операционными системами. Одна из самых очевидных особенностей - это изобилие файловых систем, которые являются доступными. Большинство коммерческих версий UNIX поддерживают два или три типа файловой системы. Linux, однако, поддерживает большинство из современных файловых систем. показывает, какие файловые системы поддерживаются ОС UNIX. Любую из этих файловых систем можно смонтировать на Linux, хотя не все из этих систем поддерживают в полном объеме чтение и запись данных.

Таблица 1. Файловые системы, которые являются стандартными для UNIX

Большинство коммерческих версий UNIX поддерживают журналируемые файловые системы. Например, HP-UX в качестве стандартной файловой системы использует hfs, но он также поддерживает журналируемую файловую систему vxfs. Solaris поддерживает ufs и zfs. Журналируемая файловая система является важным компонентом любой серверной среды для предприятия. В Linux поддержка журналируемых файловых систем была реализована поздно, но теперь есть несколько вариантов – от клонов коммерческих файловых систем (xfs, jfs) до специфических для Linux файловых систем (ext3, reiserfs).

Другие особенности файловых систем включают в себя поддержку квот, список контроля доступа к файлам, зеркальное копирование, снимки системы и изменение размеров. В той или иной форме они поддерживаются файловыми системами Linux. Большинство из этих особенностей не являются стандартными для Linux. Одни особенности могут работать на одной файловой системе, тогда как другие потребуют другой файловой системы. Некоторые из этих особенностей просто недоступны на определенных файловых системах Linux, а другие требуют дополнительной установки инструментов, например, определенной версии LVM или поддержку дисковых массивов (software raid package). Исторически так сложилось, что в Linux совместимость программных интерфейсов и стандартных инструментов достигается с трудом, поэтому множество файловых систем реализуют эти особенности поразному.

Поскольку коммерческие UNIX-системы поддерживают ограниченное количество файловых систем, их инструменты и методики работы с ними более стандартизованы. Например, так как в Irix поддерживалась только одна главная файловая система, то был только один способ задания списков контроля доступа. Это гораздо удобнее для конечного пользователя и для дальнейшей поддержки этой ОС.

Доступность приложений

Большинство базовых приложений одинаковы как на UNIX, так и на Linux. Например, команды cp , ls , vi и cc доступны на UNIX и Linux, и очень похожи, если не полностью идентичны. Linux-версии этих инструментов основаны на GNU-версиях этих инструментов, тогда как версии этих инструментов для UNIX основаны на традиционных UNIX-инструментах. Эти инструменты для UNIX имеют длительную историю и редко менялись.

Но это вовсе не означает, что коммерческие версии UNIX не могут использоваться с GNU-инструментами. Фактически много производителей коммерческих UNIX ОС включают в свои дистрибутивы много GNU-инструментов или предлагают их как бесплатное дополнение. GNU-инструменты не просто стандартные инструментальные средства. Некоторые из таких бесплатных утилит не имеют коммерческих аналогов (emacs или Perl). Большинство производителей предустанавливают эти программы, и они либо автоматически устанавливаются вместе с системой, или доступны в качестве дополнительного компонента.

Бесплатные приложения с открытым исходным кодом почти всегда встраиваются во все Linux-дистрибутивы. Существует большое количество бесплатного программного обеспечения, доступного для Linux, и многие из этих приложений были портированы на коммерческие версии ОС UNIX.

Коммерческие и/или с закрытым исходным кодом приложения (CAD, финансовые программы, графические редакторы) могут не иметь аналогов для Linux. Хотя некоторые производители выпускают версии своих приложений для Linux, большинство производителей не торопится делать этого, пока популярность Linux у пользователей не возрастет.

С другой стороны, коммерческие версии UNIX исторически имеют поддержку большого количества приложений уровня предприятия, например, Oracle или SAP. Linux сильно проигрывает из-за трудности сертификации больших приложений, тогда как коммерческие версии UNIX не меняются сильно от релиза к релизу. Linux может сильно измениться не только с каждым новым дистрибутивом, но иногда и в промежутке между релизами одного и того же дистрибутива. Поэтому производителю программного обеспечения очень трудно понять, в какой именно среде будет использоваться их приложение.

Системное администрирование

Хотя некоторые дистрибутивы Linux поставляются со стандартным набором инструментов для управления системой, например, SUSE"s YaST, не существует общего для Linux стандарта инструментальных средств системного администрирования. Доступны текстовые файлы и инструменты командной строки, но иногда их применение может быть неудобным. Каждая коммерческая версия UNIX имеет свой собственный интерфейс управления системой. С помощью этого интерфейса можно управлять элементами системы и изменять их. Ниже приведен пример Менеджера системного администрирования для HP-UX.

Данный SAM содержит следующие модули:

  • Пользователи или группы, которыми надо управлять.
  • Параметры ядра, которые можно изменить.
  • Настройка сети.
  • Настройка и инициализация дисков.
  • Конфигурирование X server.

Качество этого пакета утилит великолепно, причем этот пакет утилит хорошо взаимодействует с текстовыми файлами. Аналога этого инструмента для Linux не существует. Даже YaST в SUSE не обладает такой же функциональностью.

Еще один аспект в UNIX и Linux, который, кажется, меняется почти с каждой версией ОС – расположение сценариев инициализации системы. К счастью, /sbin/init и /etc/inittab являются стандартными каталогами. Но сценарии запуска системы находятся в различных каталогах. показывает места, где хранятся сценарии инициализации системы для различных дистрибутивов UNIX и Linux.

Таблица 2. Расположение сценариев инициализации системы для различных версий UNIX
HP-UX /sbin/init.d
AIX /etc/rc.d/init.d
Irix /etc/init.d
Solaris /etc/init.d
Redhat /etc/rc.d/init.d
SUSE /etc/rc.d/init.d
Debian /etc/init.d
Slackware /etc/rc.d

Из-за большого количества дистрибутивов Linux и почти бесконечного числа доступных приложений (с учетом того, что версий этого приложения тоже много) для этой ОС, управление программами на Linux становится сложной задачей. Выбор правильного инструмента зависит от того, с каким дистрибутивом вы работаете. Далее неудобства проистекают из того, что некоторые дистрибутивы используют формат файлов Redhat Package Manager (RPM), в то время как их программы несовместимы. Такое разделение приводит к появлению огромного количества опций работы с пакетами, и не всегда понятно, какая система используется в конкретной среде.

С другой стороны, коммерческие дистрибутивы UNIX содержат стандартные менеджеры пакетов. Даже при том что существуют различные версии приложений и специфичные форматы для различных версий UNIX, среда управления приложениями неизменна. Например, Solaris использует одни и те же инструменты управления пакетами приложений с момента своего создания. И скорее всего средства идентификации, добавления или удаления пакетов программ в Solaris будут все также неизменными.

Производители коммерческих дистрибутивов UNIX поставляют также и аппаратное обеспечение, для работы на котором предназначена их ОС, поэтому в своих ОС они могут внедрять какие-либо новые устройства, что гораздо труднее сделать для Linux. Например, в последних версиях Linux были попытки реализовать поддержку компонентов с возможностью их "горячей замены" (с переменным успехом). Коммерческие версии UNIX обладают такой возможностью уже много лет. Также в коммерческих версиях UNIX лучше, чем в Linux, реализован мониторинг за аппаратным обеспечением. Производители могут написать драйверы и внедрить их в свою операционную систему, которая будет вести мониторинг состояния системы, например, число ошибок памяти ECC, параметры энергопотребления или любого другого компонента аппаратного обеспечения. Поддержка такого рода для Linux ожидается только в отдаленном будущем.

Аппаратное обеспечение для коммерческих UNIX-систем также имеет более продвинутые опции загрузки. Прежде чем операционная система загрузится, существует много возможностей настроить ее загрузку, проверить "здоровье" системы или настроить параметры аппаратного обеспечения. BIOS стандартного персонального компьютера PC имеет меньшую часть, если вообще имеет, этих опций.

Поддержка

Одно из наиболее значительных различий между Linux и UNIX состоит в стоимости. Поставщики коммерческих UNIX-систем установили высокую цену на свой UNIX, хотя его можно использовать только с их аппаратными платформами. Дистрибутивы Linux, с другой стороны, стоят сравнительно недорого, если вообще не бесплатны.

При покупке коммерческой версии UNIX производители обычно предоставляют техническую поддержку. Большинство пользователей Linux лишено поддержки компании-производителя ОС. Они могут получить поддержку только с помощью электронной почты, из форумов и от различных сообществ пользователей Linux. Однако эти группы предназначены не только для пользователей Linux. Многие администраторы коммерческих операционных систем семейства UNIX участвуют в этих открытых группах поддержки для того чтобы иметь возможность как оказывать помощь, так и, при необходимости, пользоваться ею. Много людей находят такие группы взаимопомощи даже более полезными, чем система поддержки, предлагаемая изготовителем ОС.

Заключение

Фундаментальные основы UNIX и Linux очень схожи. Пользователю или системному администратору переход с Linux на UNIX добавит в работу некоторые неудобства, но в целом переход окажется безболезненным. Даже если файловые системы и ядра у них будут отличаться и для их освоения потребуется некоторое время, инструменты и API остаются неизменными. В основном эти различия существенны не более чем различия между основными версиями UNIX. Все ветви UNIX и Linux постепенно развиваются и будут незначительно отличаться друг от друга, но из-за зрелости концепций UNIX основы ОС не изменятся очень сильно.

UNIX зародился в лаборатории Bell Labs фирмы AT&T более 20 лет назад.

UNIX – это многопользовательская, многозадачная ОС, включает в себя достаточно мощные средства защиты программ и файлов различных пользователей. Написана на языке С и является машинно-независимой, что обеспечивает ее высокую мобильность и легкую переносимость прикладных программ на ПК различной архитектуры. Важной особенностью ОС семейства UNIX является ее модульность и обширный набор сервисных программ, которые позволяют создать благоприятную операционную обстановку для пользователей-программистов.

Поддерживает иерархическую файловую структуру, виртуальную память, многооконный интерфейс, многопроцессорные системы, многопользовательскую систему управления базами данных, неоднородные вычислительные сети.

ОС UNIX имеет следующие основные характеристики:

Переносимость;

- вытесняющая многозадачность на основе процессов, работающих в изолированных адресных пространствах в виртуальной памяти;

Поддержка одновременной работы многих пользователей;

Поддержка асинхронных процессов;

Иерархическая файловая система;

Поддержка независимых от устройств операций ввода-вывода (через специальные файлы устройств);

Стандартный интерфейс для программ (программные каналы, IPC) и пользователей (командный интерпретатор, не входящий в ядро ОС);

Встроенные средства учета использования системы.

Архитектура ОС UNIX - многоуровневая. На нижнем уровне работает ядро операционной системы. Функции ядра (управление процессами, памятью, обработка прерываний и т.д.) доступны через интерфейс системных вызовов , образующих второй уровень. Системные вызовы обеспечивают программный интерфейс для доступа к процедурам ядра. На следующем уровне работают командные интерпретаторы , команды и утилиты системного администрирования, коммуникационные драйверы и протоколы , - все то, что обычно относят к системному программному обеспечению . Внешний уровень образуют прикладные программы пользователя, сетевые и другие коммуникационные службы, СУБД и утилиты.

Операционная система выполняет две основные задачи: манипулирование данными и их хранение. Большинство программ в основном манипулирует данными, но, в конечном счете, они где-нибудь хранятся. В системе UNIX таким местом хранения является файловая система . Более того, в UNIX все устройства , с которыми работает операционная система, также представлены в виде специальных файлов в файловой системе.

Логическая файловая система в ОС UNIX (или просто файловая система ) - это иерархически организованная структура всех каталогов и файлов в системе, начинающаяся с корневого каталога. Файловая система UNIX обеспечивает унифицированный интерфейс доступа к данным, расположенным на различных носителях, и к периферийным устройствам. Логическая файловая система может состоять из одной или нескольких физических файловых (под)систем , являющихся разделами физических носителей (дисков, CD-ROM или дискет).


Файловая система контролирует права доступа к файлам, выполняет операции создания и удаления файлов, а также выполняет запись/чтение данных файла. Файловая система обеспечивает перенаправление запросов, адресованных периферийным устройствам, соответствующим модулям подсистемы ввода-вывода.

Иерархическая структура файловой системы UNIX упрощает ориентацию в ней. Каждый каталог, начиная с корневого (/ ), в свою очередь, содержит файлы и подкаталоги .

В ОС UNIX нет теоретических ограничений на количество вложенных каталогов, но есть ограничения на максимальную длину имени файла, которое указывается в командах - 1024 символов.

В UNIX существует несколько типов файлов, различающихся по функциональному назначению:

Обычный файл - наиболее общий тип файлов, содержащий данные в некотором формате. Для операционной системы такие файлы представляют собой просто последовательность байтов. К этим файлам относятся текстовые файлы, двоичные данные и выполняемые программы.

Каталог- это файл, содержащий имена находящихся в нем файлов, а также указатели на дополнительную информацию, позволяющие операционной системе производить действия с этими файлами. С помощью каталогов формируется логическое дерево файловой системы.

Специальный файл устройства - Обеспечивает доступ к физическим устройствам. Доступ к устройствам осуществляется путем открытия, чтения и записи в специальный файл устройства.

FIFO - именованный канал. Этот файл используется для связи между процессами по принципу очереди.

Сокет- позволяют представить в виде файла сетевое соединение.

Каждый файл в ОС UNIX содержит набор прав доступа, по которому определяется, как пользователь взаимодействует с данным файлом.

Каждый жесткий диск состоит из одной или нескольких логических частей - разделов. Расположение и размер раздела определяется при форматировании диска. В ОС UNIX разделы выступают в качестве независимых устройств, доступ к которым осуществляется как к различным носителям данных. В разделе может располагаться только одна физическая файловая система .

Имеется много типов физических файловых систем, например FAT16 и NTFS, с разной структурой. Более того, имеется множество типов физических файловых систем UNIX (ufs , s5fs , ext2 , vxfs , jfs , ffs и т.д.).

При этом каждый из них может выполнять множество различных вычислительных процессов, которые будут использовать ресурсы именно этого компьютера.

Вторая колоссальная заслуга Unix - в её мультиплатформенности. Ядро системы разработано таким образом, что его легко можно приспособить практически под любой микропроцессор.

Unix имеет и другие характерные особенности:

  • использование простых текстовых файлов для настройки и управления системой;
  • широкое применение утилит, запускаемых из командной строки ;
  • взаимодействие с пользователем посредством виртуального устройства - терминала;
  • представление физических и виртуальных устройств и некоторых средств межпроцессового взаимодействия в виде файлов ;
  • использование конвейеров из нескольких программ, каждая из которых выполняет одну задачу.

Применение

В настоящее время Unix-системы распространены в основном среди серверов , а также как встроенные системы для различного оборудования, включая смартфоны . Также Unix-системы доминируют на суперкомпьютерах , в частности на 100 % суперкомпьютеров из рейтинга TOP500 установлена ОС Linux.

Первые версии Unix были написаны на ассемблере и не имели встроенного компилятора с языком высокого уровня . Примерно в 1969 году Кен Томпсон при содействии Денниса Ритчи разработал и реализовал язык Би (B), представлявший собой упрощённый (для реализации на мини-компьютерах) вариант разработанного в языка BCPL . Би, как и BCPL, был интерпретируемым языком. В 1972 году была выпущена вторая редакция Unix, переписанная на языке Би. В 1969-1973 гг. на основе Би был разработан компилируемый язык, получивший название Си (C).

Раскол

Важной причиной раскола Unix стала реализация в 1980 году стека протоколов TCP/IP . До этого межмашинное взаимодействие в Unix пребывало в зачаточном состоянии - наиболее существенным способом связи был UUCP (средство копирования файлов из одной Unix-системы в другую, изначально работавшее по телефонным сетям с помощью модемов).

Было предложено два интерфейса программирования сетевых приложений: сокет Беркли (Berkley sockets) и интерфейс транспортного уровня TLI (англ. Transport Layer Interface ).

Интерфейс Berkley sockets был разработан в университете Беркли и использовал стек протоколов TCP/IP , разработанный там же. TLI был создан AT&T в соответствии с определением транспортного уровня модели OSI и впервые появился в системе System V версии 3. Хотя эта версия содержала TLI и потоки, первоначально в ней не было реализации TCP/IP или других сетевых протоколов, но подобные реализации предоставлялись сторонними фирмами.

Реализация TCP/IP официально и окончательно была включена в базовую поставку System V версии 4. Это, как и другие соображения (по большей части, рыночные), вызвало окончательное размежевание между двумя ветвями Unix - BSD (университета Беркли) и System V (коммерческая версия от AT&T). Впоследствии, многие компании, лицензировав System V у AT&T, разработали собственные коммерческие разновидности Unix, такие как AIX , CLIX, HP-UX , IRIX , Solaris .

Современные реализации Unix, как правило, не являются системами V или BSD в чистом виде. Они реализуют возможности как System V, так и BSD.

Свободные Unix-подобные операционные системы

В настоящий момент GNU/Linux и представители семейства BSD быстро отвоёвывают рынок у коммерческих Unix-систем и одновременно проникают как на настольные компьютеры конечных пользователей, так и на мобильные и встраиваемые системы.

Проприетарные системы

После разделения компании AT&T товарный знак Unix и права на оригинальный исходный код неоднократно меняли владельцев, в частности, они длительное время принадлежали компании Novell .

Влияние Unix на эволюцию операционных систем

Unix-системы имеют большую историческую важность, поскольку благодаря им распространились некоторые популярные сегодня концепции и подходы в области ОС и программного обеспечения . Также, в ходе разработки Unix-систем был создан язык Си .

Широко используемый в системном программировании язык Си , созданный изначально для разработки Unix, превзошёл Unix по популярности. Язык Си был первым «веротерпимым» языком, который не пытался навязать программисту тот или иной стиль программирования. Си был первым высокоуровневым языком, предоставляющим доступ ко всем возможностям процессора, таким как ссылки , таблицы , битовые сдвиги , инкременты и т. п. С другой стороны, свобода языка Си приводила к ошибкам переполнения буфера в таких функциях стандартной библиотеки Си, как gets и scanf. Результатом стали многие печально известные уязвимости, например, та, что эксплуатировалась в знаменитом черве Морриса .

Первые разработчики Unix способствовали внедрению принципов модульного программирования и повторного использования в инженерную практику.

Unix предоставлял возможность использования протоколов TCP/IP на сравнительно недорогих компьютерах, что привело к быстрому росту Интернета . Это, в свою очередь, способствовало быстрому обнаружению нескольких крупных уязвимостей в системе безопасности, архитектуре и системных утилитах Unix.

Со временем ведущие разработчики Unix разработали культурные нормы разработки программного обеспечения, которые стали столь же важны, как и сам Unix. ( )

Одними из самых известных примеров Unix-подобных ОС являются macOS , Solaris , BSD и NeXTSTEP .

Социальная роль в сообществе ИТ-профессионалов и историческая роль

Первоначальные Unix работали на крупных многопользовательских компьютерах, к которым также предлагались и проприетарные ОС от производителя оборудования, такие как RSX-11 и её потомок VMS . Невзирая на то, что по ряду мнений [чьих? ] тогдашний Unix имел недостатки по сравнению с данными ОС (например, отсутствие серьёзных движков баз данных), он был: а) дешевле, а иногда и бесплатен для академических учреждений; б) был портируем с оборудования на оборудование и разработан на портируемом языке Си, что «отвязывало» разработку программ от конкретной аппаратуры. Кроме того, «отвязанным» от аппаратуры и производителя оказался и опыт пользователя - человек, работавший с Unix на VAX, легко работал с ней же и на 68xxx, и так далее.

Производители аппаратуры в то время часто прохладно относились к Unix, считая её игрушечной, и предлагая свою проприетарную ОС для серьёзной работы - в первую очередь СУБД и основанных на них бизнес-приложений в коммерческих структурах. Известны комментарии по этому поводу от DEC по поводу её VMS . К этому прислушивались корпорации, но не академическая среда, которая имела всё для себя необходимое в Unix, зачастую не требовала официальной поддержки от производителя, справляясь своими силами, и ценила дешевизну и переносимость Unix. Таким образом, Unix была едва ли не первой переносимой на разную аппаратуру ОС.

Вторым резким взлётом Unix было появление RISC -процессоров около 1989 года. Ещё до того существовали т. н. workstations - персональные однопользовательские компьютеры большой мощности, имеющие достаточный объём памяти, жёсткого диска и достаточно развитую ОС (многозадачность, защита памяти) для работы с серьёзными приложениями, такими как CADы. Среди производителей таких машин выделялась компания Sun Microsystems , сделавшая себе на них имя.

До появления RISC-процессоров в этих станциях обычно использовался процессор Motorola 680x0 , тот же, что и в компьютерах фирмы Apple (хотя и под более развитой операционной системой, чем у Apple). Около 1989 года на рынке появились коммерческие реализации процессоров RISC-архитектуры. Логичным решением ряда компаний (Sun и других) был перенос Unix на эти архитектуры, что немедленно повлекло за собой и перенос всей экосистемы ПО для Unix.

Проприетарные серьёзные ОС, такие как VMS, начали свой закат именно с этого момента (даже если и удалось перенести на RISC саму ОС, всё было намного сложнее с приложениями под неё, которые в этих экосистемах зачастую разрабатывались на ассемблере или же на проприетарных языках типа BLISS), и Unix стал ОС для самых мощных компьютеров в мире.

Однако в это время экосистема начала переходить на GUI в лице Windows 3.0 . Огромные преимущества GUI, а также, например, унифицированная поддержка всех типов принтеров, были оценены и разработчиками, и пользователями. Это сильно подорвало позиции Unix на рынке PC - такие реализации, как SCO и Interactive UNIX, не справлялись с поддержкой Windows-приложений. Что же касается GUI для Unix, называемого X11 (были и иные реализации, много менее популярные), то он не мог полноценно работать на обычной пользовательской PC ввиду требований к памяти - для нормальной работы X11 требовалось 16 МБ, в то время как Windows 3.1 с достаточной производительностью исполняла и Word, и Excel одновременно в 8 МБ (это было стандартным размером памяти PC в то время). При высоких ценах на память это было лимитирующим фактором.

Успех Windows дал импульс внутреннему проекту Microsoft под названием Windows NT , которая была совместима с Windows по API, но при этом имела всё те же архитектурные особенности серьёзной ОС, что и Unix - многозадачность, полноценную защиту памяти, поддержку многопроцессорных машин, права доступа к файлам и каталогам, системный журнал. Также Windows NT представила журнальную файловую систему NTFS , которая по возможностям на тот момент превышала все стандартно поставляемые с Unix файловые системы - аналоги под Unix были только отдельными коммерческими продуктами от Veritas и других.

Хотя Windows NT и не была популярна первоначально, из-за высоких требований к памяти (те же 16 МБ), она позволила Microsoft выйти на рынок решений для серверов , например, СУБД . Многие в то время не верили в возможность Microsoft, традиционно специализирующейся на настольном ПО, быть игроком на рынке ПО масштаба предприятия, где уже были свои громкие имена, такие как Oracle и Sun. К этому сомнению добавлялся тот факт, что СУБД Microsoft - SQL Server - начинался как упрощённая версия Sybase SQL Server, лицензированная у Sybase и на 99 % совместимая по всем аспектам работы с ним.

Во второй половине 1990-х годов Microsoft начал теснить Unix и на рынке корпоративных серверов.

Совокупность вышеперечисленных факторов, а также обвал цен на 3D-видеоконтроллеры , ставшими из профессионального оборудования домашним, по сути убила само понятие workstation к началу 2000-х годов.

Кроме того, системы Microsoft проще в управлении, особенно в типовых сценариях использования.

Но в данный момент начался третий резкий взлёт Unix.

Кроме того, Столлман и его товарищи прекрасно понимали, что для успеха не завязанного на корпорации программного обеспечения проприетарные средства разработки не подходят. Поэтому они разработали набор компиляторов для различных языков программирования (gcc), что вместе с разработанными ранее утилитами GNU (замена стандартных утилит Unix) составило необходимый и достаточно мощный пакет программ для разработчика.

Серьёзным конкурентом Linux на тот момент была FreeBSD , однако «соборный» стиль управления разработкой в противовес «базарному» стилю Linux, а также куда большая техническая архаичность в таких вопросах, как поддержка многопроцессорных машин и форматы исполняемых файлов, сильно замедлила развитие FreeBSD по сравнению с Linux, сделав последний флагманом мира свободного ПО.

В дальнейшем Linux достигал всё новых и новых высот:

  • перенос серьёзных проприетарных продуктов, таких как Oracle ;
  • серьёзный интерес IBM к этой экосистеме как основе для своих вертикальных решений;
  • появление аналогов почти всех привычных программ из мира Windows;
  • отказ некоторых производителей оборудования от обязательной предустановки Windows;
  • выпуск нетбуков с одной лишь Linux;
  • использование в качестве ядра в Android .

На настоящий момент Linux является заслуженно популярной ОС для серверов, хотя и куда менее популярной на рабочих столах.

Некоторые архитектурные особенности ОС Unix

Особенности Unix, отличающие данное семейство от других ОС, приведены ниже.

  • Файловая система древовидная, чувствительная к регистру символов в именах, очень слабые ограничения на длину имён и пути.
  • Нет поддержки структурированных файлов ядром ОС, на уровне системных вызовов файл есть поток байтов.
  • Командная строка находится в адресном пространстве запускаемого процесса, а не извлекается системным вызовом из процесса интерпретатора команд (как это происходит, например, в RSX-11).
  • Понятие «переменных окружения ».
  • Запуск процессов вызовом fork(), то есть возможность клонирования текущего процесса со всем состоянием.
  • Понятия stdin/stdout/stderr.
  • Ввод-вывод только через дескрипторы файлов .
  • Традиционно крайне слабая поддержка асинхронного ввода-вывода , по сравнению с VMS и Windows NT.
  • Интерпретатор команд есть обыкновенное приложение, общающееся с ядром обыкновенными системными вызовами (в RSX-11 и VMS интерпретатор команд выполнялся как специальное приложение, специальным образом размещённое в памяти, пользующееся специальными системными вызовами, поддерживались также системные вызовы, дающие возможность приложению обращаться к своему родительскому интерпретатору команд).
  • Команда командной строки есть не более чем имя файла программы, не требуется специальная регистрация и специальная разработка программ как команд (что являлось обычной практикой в RSX-11 , RT-11).
  • Не принят подход с программой, задающей пользователю вопросы о режимах своей работы, вместо этого используются параметры командной строки (в VMS , RSX-11 , RT-11 программы работали также с командной строкой, но при её отсутствии выдавали запрос на ввод параметров).
  • Пространство имён устройств на диске в каталоге /dev, поддающееся управлению администратором, в отличие от подхода Windows, где это пространство имён размещается в памяти ядра, и администрирование этого пространства (например, задание прав доступа) крайне затруднено из-за отсутствия его постоянного хранения на дисках (строится каждый раз при загрузке).
  • Широкое использование текстовых файлов для хранения настроек, в отличие от двоичной базы данных настроек, как, например, в Windows.
  • Широкое использование утилит обработки текста для выполнения повседневных задач под управлением скриптов.
  • «Раскрутка» ОС после загрузки ядра путём исполнения скриптов стандартным интерпретатором команд.
  • Широкое использование

Первое значение термина упирается в рассмотрение структур, в которые могут быть организованы файлы на носителях данных. Существует несколько видов таких структур: линейные, древовидные, объектные и другие, но в настоящее время широко распространены только древовидные структуры.

Каджый файл в древовидной структуре расположен в определенном хранилище файлов – каталоге , каждый каталог, в свою очередь, также расположен в некотором каталоге. Таким образом, по принципу вложения элементов файловой системы (файлов и каталогов) друг в друга строится дерево, вершинами которого являются непустые каталоги, а листьями – файлы или пустые каталоги. Корень такого дерева имеет название корневой каталог и обозначается каким-либо специальным символом или группой символов (например, «C: » в операционной системе Windows). Каждому файлу соответствует некоторое имя , отпределяющее его расположение в дереве файловой системы. Полное имя файла состоит из имен всех вершин дерева файловой системы, через которые можно пройти от корня до данного файла (каталога), записывая их слева-направо и разделяя специальными символами-разделителями.

В настоящее время существует огромное количество файловых систем, каждая из которых используется для определенной цели: для быстрого доступа к данным, для обеспечения целостности данных при сбоях системы, для простоты реализации, для компактного хранения данных, и т.д. Однако среди всего множества файловых систем можно выделить такие, которые обладают рядом схожих признаков, а именно:

Файлы и каталоги идентифицируются не по именам, а по индексным узлам (i-node) – индексам в общем массиве файлов для данной файловой системе. В этом массиве хранится информация об используемых блоках данных на носителе, а также – длина файла, владелец файла, права доступа и другая служебная информация под общим названием «метаданные о файле ». Логические же связки типа «имя–i-node » – есть ни что иное как содержимое каталогов.

Таким образом, каждый файл характеризуется одним i-node, но может быть связан с несколькими именами – в UNIX это называют жёсткими ссылками (см. Рисунок 1.22, «Пример жесткой ссылки»). При этом, удаление файла происходит тогда, когда удаляется последняя жёсткая ссылка на этот файл.

Важной особенностью таких файловых систем является то, что имена файлов зависят от регистра, другими словами файлы test.txt и TEST.txt отличаются (т.е. являются разными строками в файле директории).

В определенных (фиксированных для данной файловой системы) блоках физического носителя данных находится т.н. суперблок . Суперблок – это наиболее ответственная область файловой системы, содержащая информацию для работы файловой системы в целом, а также – для ёе идентификации. В суперблоке находится «магическое число » – идентификатор файловой системы, отличающий её от других файловых систем, список свободных блоков, список свободных i-node"ов и некоторая другая служебная информация.

  • Помимо каталогов и обычных файлов для хранения информации, ФС может содержать следующие виды файлов:

    Специальный файл устройства

    Обеспечивает доступ к физическому устройству. При создании такого устройства указывается тип устройства (блочное или символьное), старший номер – индекс драйвера в таблице драйверов операционной системы и младший номер – параметр, передаваемый драйверу, поддерживающему несколько устройств, для уточнения о каком «подустройстве » идет речь (например, о каком из нескольких IDE-устройств или COM-портов).

    Именованный канал Символическая ссылка

    Особый тип файла, содержимое которого – не данные, а имя какого-либо другого файла (см. Рисунок 1.23, «Пример символической ссылки» . Для пользователя такой файл неотличим от того, на который он ссылается.

    Символическая ссылка имеет ряд преимуществ по сравнению с жёсткой ссылкой: она может использоваться для связи файлов в разных файловых системах (ведь номера индексных узлов уникальны только в рамках одной файловой системы), а также более прозрачно удаление файлов – ссылка может удаляться совершенно независимо от отсновного файла.

    Сокет
  • Такие файловые системы наследуют особенности оригинального UNIX. К ним можно отнести, например: s5 (используемая в версиях UNIX System V), ufs (BSD UNIX), ext2, ext3, reiserfs (Linux), qnxfs (QNX). Все эти файловые системы различаются форматами внутренних структур, но совместимы с точки зрения основных концепций.

    Дерево каталогов

    Рассмотрение второго значения термина ФС приводит нас к уже обозначенной ранее совокупности процедур, осуществляющих доступ к файлам на различных носителях. Особенностью операционных систем семейства UNIX является существование единого дерева файловой системы для любого количества носителей данных с одинаковыми или разными типами файловых систем на них. Это достигается путем монтирования – временной подстановкой вместо каталога одной файловой системы дерева другой файловой системы, вследствие чего система имеет не несколько деревьев никак не связанных друг с другом, а одно большое разветвленное дерево с единым корневым каталогом.

    Файловая подсистема операционной системы UNIX имеет имеет уникальную систему обработки запросов к файлам – переключатель файловых систем или виртуальная файловая система (VFS ). VFS предоставляет пользователю стандартный набор функций (интерфейс) для работы с файлами, вне зависимости от места их расположения и принадлежности к разным файловым системам.

    В мире стандартов UNIX определено, что корневой каталог единого дерева файловой системы должен иметь имя / , как и символ-разделитель при формировании полного имени файла. Тогда полное имя файла может быть, например, /usr/share/doc/bzip2/README . Задача VFS – по полному имени файла найти его местоположение в дереве файловой системы, определить её тип в этом месте дерева и «переключить », т.е. передать файл на дальнейшую обработку драйверу конктретной файловой системы. Такой подход позволяет использовать практически неограниченое количество различных файловых систем на одном компьютере под управлением одной операционной системы, а пользователь даже не будет знать, что файлы физически находятся на разных носителях информации.

    Использование общепринятых имен основных файлов и структуры каталогов существенно облегчает работу в операционной системе, её администрирование и переносимость. Некоторые из этих структур используются при запуске системы, некоторые – во время работы, но все они имеют большое значение для ОС вцелом, а нарушение этой структуры может привести к неработоспособности системы или ее отдельных компонентов.

    Рисунок 1.24. Стандартные каталоги в файловой системе UNIX

    Приведем краткое описание основных каталогов системы, формально описываемых специальным стандартом на иерархию файловой системы (Filesystem Hierarchy Standart). Все каталоги можно разделить на две группы: для статической (редко меняющейся) информации – /bin , /usr и динамической (часто меняющейся) информации – /var , /tmp . Исходя из этого администраторы могут разместить каждый из этих каталогов на собственном носителе, обладающем соответствующими характеристиками.

    Корневой каталог

    Корневой каталог / является основой любой ФС UNIX. Все остальные каталоги и файлы располагаются в рамках струтуры (дерева), порождённой корневым каталогом, независимо от их физического местонахождения.

    /bin

    В этом каталоге находятся часто употребляемые команды и утилиты системы общего пользования. Сюда входят все базовые команды, доступные даже если была примонтирована только корневая файловая система. Примерами таких команд являются: ls , cp , sh и т.п..

    /boot

    Директория содержит всё необходимое для процесса загрузки операционной системы: программу-загрузчик, образ ядра операционной системы и т.п..

    /dev

    Каталог содержит специальные файлы устройств, являющиеся интерфейсом доступа к периферийным устройствам. Наличие такого каталога не означает, что специальные файлы устройств нельзя создавать в другом месте, просто достаточно удобно иметь один каталог для всех файлов такого типа.

    /etc

    В этом каталоге находятся системные конфигурационные файлы. В качестве примеров можно привести файлы /etc/fstab , содержащий список монтируемых файловых систем, и /etc/resolv.conf , который задаёт правила составления локальных DNS-запросов. Среди наиболее важных файлов – скрипты инифиализации и деинициализации системы. В системах, наследующих особенности UNIX System V, для них отведены каталоги с /etc/rc0.d по /etc/rc6.d и общий для всех файл описания – /etc/inittab .

    /home (необязательно)

    Директория содержит домашние директории пользователей. Её существование в корневом каталоге не обязательно и её содержимое зависит от особенностей конкретной UNIX-подобной операционной системы.

    /lib

    Каталог для статических и динамических библиотек, необходимых для запуска программ, находящихся в директориях /bin и /sbin .

    /mnt

    Стандартный каталог для временного монтирования файловых систем – например, гибких и флэш-дисков, компакт-дисков и т.п..

    /root (необязательно)

    Директория содержит домашюю директорию суперпользователя. Её существование в корневом каталоге не обязательно.

    /sbin

    В этом каталоге находятся команды и утилиты для системного администратора. Примерами таких команд являются: route , halt , init и т.п.. Для аналогичных целей применяются директории /usr/sbin и /usr/local/sbin .

    /usr

    Эта директория повторяет структуру корневой директории – содержит каталоги /usr/bin , /usr/lib , /usr/sbin , служащие для аналогичных целей.

    Каталог /usr/include содержит заголовочные файлы языка C для всевозможные библиотек, расположенных в системе.

    Каталог /usr/local является следующим уровнем повторения корневого каталога и служит для хранения программ, установленных администратором в дополнение к стандартной поставке операционной системы.

    Каталог /usr/share хранит неизменяющиеся данные для установленных программ. Особый интерес представляет каталог /usr/share/doc , в который добавляется документация ко всем установленным программам.

    /var , /tmp

    Используются для хранения временных данных процессов – системных и пользовательских соответственно.