Многие слышали такие слова, как GPS, ГЛОНАСС, GALILEO. Большинство знает, что эти понятия означают навигационные спутниковые системы (далее - НСС).

Аббревиатура GPS относится к американской НСС NAVSTAR. Эта система была разработана для военных целей, но была использована и для решения гражданских задач - определение местоположения для воздушных, сухопутных, морских пользователей.

В Советском союзе разработка собственной НСС ГЛОНАСС была скрыта за завесой секретности. После распада СССР работы в этом направлении длительное время не велись, поэтому NAVSTAR стала единственной глобальной системой, которая применялась для определения местоположения в любой точке планеты. Но только США доступно другое предназначение этой системы – наведения массового поражения на цель. И еще один не маловажный фактор – по решению военного ведомства США может быть отключен «гражданский» сигнал с американских навигационных спутников и пассажирские самолеты, корабли потеряют ориентацию. Эта монополия на управление спутниковой системой со стороны США не устраивает многие страны, включая Россию. Поэтому многие страны Россия, Индия, Япония, страны Европы, Китай, стали разрабатывать свои собственные НСС позиционирования. Все системы являются системами двойного назначения – они могут передавать два вида сигналов: для гражданских объектов и повышенной точности для военных потребителей. Основной принцип работы навигационной системы – полная автономность: система не принимает никаких сигналов от пользователей (беззапросная) и имеет высокую степень помехозащищенности и надежности.

Создание и эксплуатация любой НСС - очень сложный и дорогостоящий процесс, который из-за военной направленности должен принадлежать только государству страны-разработчика, поскольку является стратегическим видом вооружения. В случае вооруженного конфликта технология спутниковой навигации может быть использована не только для наведения оружия, но и для десантирования грузов, поддержки передвижения военных подразделений, осуществления диверсионных и разведывательных операций, что даст значительное преимущество стране, обладающей собственной технологией спутникового позиционирования.

Российская система ГЛОНАСС использует принцип определения позиции такой же, как у американской системы. В октябре 1982 года первый спутник ГЛОНАСС вышел на орбиту Земли, но в эксплуатацию система была введена только в 1993 году. Спутники российской системы беспрерывно излучают сигналы стандартной точности (СТ) - в диапазоне 1, 6 ГГц и высокой точности (ВТ) - в диапазоне 1,2 ГГц. Прием сигнала СТ доступен любому пользователю системы и обеспечивает определение горизонтальных и вертикальных координат, вектора скорости, а также времени. Например, для точного указания координат и времени необходимо принять и обработать информацию не менее, чем от четырех спутников системы ГЛОНАСС. Вся система ГЛОНАСС состоит из двадцати четырех спутников, находящихся на круговых орбитах на высоте около 19100 км. Период обращения каждого из них составляет 11 часов и 15 минут. Все спутники располагаются в трех орбитальных плоскостях - в каждой по 8 аппаратов. Конфигурация их размещения обеспечивает глобальное покрытие навигационным полем не только поверхность земли, но и околоземное пространство. В систему ГЛОНАСС входят Центр управления и сеть станций измерения и контроля, которые располагаются на всей территории России. Каждый потребитель, принимающий навигационный сигнал со спутников ГЛОГАСС, должен иметь навигационный приемник и аппаратуру обработки, позволяющей вычислить собственные координаты, время и скорость.

В настоящее время система ГЛОНАСС не обеспечивает 100% доступ к своим услугам для пользователей, но предполагает наличие трех спутников на видимом горизонте России, что по заявлению специалистов делает возможным вычислять пользователям свое местоположение. Сейчас на орбите Земли находятся спутники «ГЛОНАСС-М», но после 2015 года планируется их заменить на аппараты нового поколения - «ГЛОНАСС-К». Новый спутник будет иметь улучшенные показатели (увеличен гарантийный срок, появиться третья частота для гражданских потребителей и т.д.), аппарат будет в два раза легче - 850 кг вместо 1415 кг. Также для поддержания работоспособности всей системы потребуется только один групповой запуск «ГЛОНАСС-К» в год, что существенно снизит общие расходы. Для внедрения системы ГЛОНАСС и обеспечения ее финансирования, аппаратура этой навигационной системы устанавливается на всех вводимых в эксплуатацию транспортных средствах: самолетах, судах, наземном транспорте и т.д. Другое основное предназначение системы ГЛОНАСС - обеспечение национальной безопасности страны. Однако, по мнению экспертов, будущее российской навигационной системы не является безоблачным.

Система Galileo создается с целью обеспечения европейских потребителей самостоятельной навигационной системой - независимой, в первую очередь, от США. Финансовый источник этой программы составляет около 10 млрд. евро в год и финансируется на одну треть из бюджета, а на две трети из средств частных компаний. Система Galileo включает 30 спутников и наземные сегменты. Изначально Китай, наравне с другими 28 государствами присоединился к программе GALILEO. Россия вела переговоры по взаимодействию российской системы навигации с европейской GALILEO. Кроме европейских государств к программе GALILEO присоединились Аргентина, Малайзия, Австралия, Япония и Мексика. Планируется, что GALILEO будет передавать десять видов сигналов для предоставления следующих видов услуг: определение местоположения с точностью от 1 до 9 метров, обеспечение информацией служб спасения всех видов транспорта, предоставление услуг государственным службам, скорой помощи, пожарным, полиции, военным специалистам и службам, обеспечивающим жизнедеятельности населения. Еще одна немаловажная деталь - программа GALILEO обеспечит создание около 150 тыс. рабочих мест.

В 2006 году Индия также приняла решение о создании собственной навигационной системы IRNSS. Бюджет программы около 15 млрд. рупий. На геосинхронные орбиты планируется вывести семь спутников. Работы по развертыванию индийской системы ведет государственная компания ISRO. Все аппаратные средства системы будут разрабатываться только индийскими компаниями.

Китай, желающий занять ведущую позицию на геополитической карте мира, разработал собственную спутниковую навигационную систему «Бэйдоу» (Beidou). В сентябре 2012 года два спутника, входящие в эту систему, были успешно запущены с космодрома Сичан. Они пополнили список 15 космических аппаратов, выведенных китайскими специалистами на околоземную орбиту в рамках создания полноценной спутниковой навигационной системы.

Реализация программы началась китайскими разработчиками еще в 2000 году с запуска двух спутников. Уже в 2011 году на орбите находилось 11 спутников, и система вошла в стадию экспериментальной эксплуатации.

Развертывание собственной навигационной спутниковой системы позволит Китаю не зависеть от крупнейших мировых систем американской (GPS) и российской (ГЛОНАСС). Это повысит эффективность китайских отраслей экономики, особенно, таких, которые связаны с телекоммуникациями.

Планируется, что к 2020 году в китайской НСС будет задействовано около 35 спутников, и тогда система «Бэйдоу» сможет контролировать весь земной шар. Китайская НСС предусматривает следующие виды услуг: определение местоположения с точностью до 10 м, скорости до 0,2 м/с и времени до 50 нс. Особенный круг пользователей будет иметь доступ к более точным параметрам измерений. Китай готов на взаимодействие с другими странами по разработке и эксплуатации спутниковой навигации. Китайская система «Бэйдоу» полностью совместима с европейской Galileo, российской ГЛОНАСС и американской GPS.

«Бэйдоу» эффективно применяется при подготовке прогнозов погоды, предупреждении стихийных бедствий, в области транспорта наземного, воздушного и морского, а также геологоразведке.

В планах Китая постоянное усовершенствование своей спутниковой навигационной системы. Увеличение количества спутников позволит расширить зону обслуживания всего азиатско-тихоокеанского региона.

Использованы материалы:
http://www.odnako.org/blogs/show_20803/
http://www.masters.donntu.edu.ua/2004/ggeo/mikhedov/diss/libruary/mark.htm
http://overseer.com.ua/about_glonass.html
http://4pda.ru/2010/03/16/21851/
http://expert.com.ua/57706-galileo-%D0%BE%D0%B1%D0%BE%D0%B9%D0%B4%D1%91%D1%82%D1%81%D1%8F-%D0%B5%D0%B2%D1%80%D0%BE%D1%81%D0%BE%D1%8E%D0%B7%D1%83-%D0%BD%D0%B0%D0%BC%D0%BD%D0%BE%D0%B3%D0%BE-%D0%B4%D0%BE%D1%80%D0%BE%D0%B6%D0%B5.html

Сегодня мы поговорим о том, что такое GPS, как работает эта система. Уделим внимание развитию данной технологии, ее функциональным особенностям. Также обсудим, какую роль в работе системы играют интерактивные карты.

История появления GPS

История появления глобальной системы позиционирования, или определения координат, началась в США еще в далеких 50-х годах при запуске первого советского спутника в космос. Бригада американских ученых, следивших за запуском, заметила, что при отдалении спутник равномерно меняет свою частоту сигнала. После глубокого анализа данных они пришли к выводу, что при помощи спутника, если говорить более подробно, то его расположения и издаваемого сигнала, можно точно определить нахождение и скорость передвижения человека на земле, как и наоборот, скорость и нахождение спутника на орбите при определении точных координат человека. К концу семидесятых годов Минобороны США запустило систему GPS в своих целях, а еще через несколько лет она стала доступна для гражданского применения. Система GPS как работает сейчас? Точно так, как и работала в то время, по тем же принципам и основам.

Сеть спутников

Более двадцати четырех спутников, находящихся на околоземной орбите, передают радиосигналы привязки. Количество спутников варьируется, но на орбите всегда находится нужное их число для обеспечения бесперебойной работы, плюс некоторые из них есть в запасе, чтобы в случае поломки первых принять их функции на себя. Так как срок службы каждого из них приблизительно около 10 лет, производится запуск новых, модернизированных версий. Вращение спутников происходит по шести орбитам вокруг Земли на высоте менее 20 тысяч км, оно образует взаимосвязанную сеть, которой управляют станции GPS. Находятся последние на тропических островах и связаны с основным координационным центром в США.

Как работает GPS-навигатор?

Благодаря этой сети можно узнать местонахождение при помощи вычисления задержки прохождения сигнала от спутников, и при помощи этой информации определить координаты. Система GPS как работает сейчас? Как и любая сеть навигации в пространстве - она совершенно бесплатна. Она с высокой эффективностью работает при любых погодных условиях и в любое время суток. Единственная покупка, которая должна у вас быть, это сам GPS-навигатор или устройство, которое поддерживает функции GPS. Собственно, принцип работы навигатора строится на давно используемой простой схеме навигации: если точно знаете место, где находится маркерный объект, наиболее подходящий на роль ориентира, и расстояние от него до вас, нарисуйте окружность, на которой точкой обозначьте ваше месторасположение. Если радиус окружности велик, то замените ее прямой линией. Проведите несколько таких полос от возможного вашего расположения в сторону маркеров, точка пересечения прямых обозначит ваши координаты на карте. Вышеупомянутые спутники в таком случае как раз и играют роль этих маркерных объектов с расстоянием от вашего месторасположения около 18 тысяч км. Хотя вращение их по орбите и происходит с огромной скоростью, местоположение постоянно отслеживается. В каждом навигаторе установлен GPS-приемник, который запрограммирован на нужную частоту и находится в прямом взаимодействии со спутником. В каждом радиосигнале содержится определенное количество закодированной информации, которая включает в себя ведомости о техническом состоянии спутника, местонахождении его на орбите Земли и часовом поясе (точное время). К слову, информация о точном времени и является наиболее нужной для получения данных о ваших координатах: происходящее вычисление отрезка времени между отдачей и приемом радиосигнала умножается на скорость самой радиоволны и путем недолговременных подсчетов рассчитывается расстояние между вашим навигационным прибором и спутником на орбите.


Сложности синхронизации

Исходя из этого принципа навигации, можно предположить, что для точного определения ваших координат могут понадобиться всего два спутника, на основе сигналов которых легко будет найти точку пересечения, и в итоге — место, где вы находитесь. Но, к сожалению, технические причины требуют применения еще одного спутника как маркера. Главная проблема заключается в часах GPS-приемника, что не позволяет провести достаточную синхронизацию со спутниками. Причиной этому является разница в отображении времени (на вашем навигаторе и в космосе). На спутниках присутствуют дорогие высококачественные часы на атомной основе, что позволяет им вести подсчет времени с предельной точностью, тогда как на обычных приемниках такие хронометры применить попросту невозможно, так как габариты, стоимость, сложность в эксплуатации не позволили бы применять их повсюду. Даже малая ошибка в 0.001 секунды может сместить координаты более чем на 200 км в сторону!


Третий маркер

Так что разработчики решили оставить обычную технологию кварцевых часов в GPS-навигаторах и пойти по другому пути, если говорить точнее - использовать вместо двух ориентиров-спутников — три, соответственно, столько же линий для последующего пересечения. Решение проблемы строится на гениально простом выходе: при пересечении всех линий с трех обозначенных маркеров, даже при возможных неточностях, создается зона в форме треугольника, за центр которого берется его середина - ваше расположение. Также это позволяет выявить отличие во времени приемника и всех трех спутников (для которых отличие будет одинаковым), что позволяет скорректировать пересечение линий ровно в центре, проще говоря — это определяет ваши координаты GPS.


Одна частота

Следует также заметить, что все спутники посылают на ваше устройство информацию на одной частоте, и это довольно необычно. Как работает GPS-навигатор и как воспринимает всю информацию корректно, если все спутники беспрерывно и одновременно посылают на него информацию? Все довольно-таки просто. Передатчики на спутнике для определения себя посылают в радиосигнале еще и стандартную информацию, в которой находится зашифрованный код. Он сообщает максимум характеристик спутника и заносится в базу данных вашего устройства, что потом позволяет сверять данные со спутника с базой данных навигатора. Даже при большом количестве спутников в зоне досягаемости очень быстро и легко их можно определить. Все это упрощает всю схему и позволяет использовать в GPS-навигаторах меньшие по размеру и более слабые антенны приема, что удешевляет и уменьшает дизайн и габариты устройств.

GPS-карты

Карты GPS загружаются на ваше устройство отдельно, так как вы сами влияете на выбор местности, по которой хотите передвигаться. Система всего лишь устанавливает ваши координаты на планете, а уже функцией карт является воссоздание на экране графической версии, на которую наносятся координаты, что и позволяет вам ориентироваться на местности. GPS как работает в данном случае? Бесплатно, это так и продолжает оставаться в таком статусе, карты в некоторых интернет-магазинах (и не только) все же платные. Зачастую для прибора с GPS-навигатором создаются отдельные приложения для работы с картами: как платные, так и бесплатные. Разновидность карт приятно удивляет и позволяет настроить дорогу из точки A в точку Б максимально информативно и со всеми удобствами: какие достопримечательности вы будете проезжать, кратчайший путь до пункта назначения, голосовой помощник, указывающий направление и другие.


Дополнительное GPS-оборудование

Применяется система GPS не только для указания вам нужного пути. Она позволяет производить слежку за объектом, на котором может находиться так называемый маячок, или GPS-трекер. Состоит он из самого приемника сигналов и передатчика на основе gsm, 3gp или иных протоколов связи для передачи информации о расположении объекта в сервисные центры, осуществляющие контроль. Применяются они во многих отраслях: охранной, медицинской, страховой, транспортной и многих других. Также существуют автомобильные трекеры, которые подключаются исключительно к автомобилю.


Путешествия без проблем

С каждым днем значения карты и бессменного компаса уходят все дальше в прошлое. Современные технологии позволяют человеку проложить дорогу для своего странствия с минимальными потерями времени, усилий и средств, при этом увидеть наиболее захватывающие и интересные места. То, что было фантастикой около столетия назад, сегодня стало реальностью, и воспользоваться этим может практически каждый: от военных, моряков и пилотов самолетов до туристов и курьеров. Сейчас большую популярность набирает и использование этих систем для коммерческой, развлекательной, рекламной отраслей, где каждый предприниматель может указать себя на глобальной карте мира, и его будет совсем нетрудно найти. Надеемся, что эта статья помогла всем, кто интересуется тем, GPS - как работает, по какому принципу происходит определение координат, какие его сильные и слабые стороны.

Спутниковые Навигационные Системы (СНС) - специальный комплекс космических и наземных технических средств, программного обеспечения и технологий, предназначенных для решения широкого круга актуальных задач, связанных, прежде всего с оперативным и точным определением местоположения относительно Земного сфероида человека, транспортных средств, технических систем и объектов при решении навигационных, оборонных, инженерно-геодезических, геологоразведочных, экологических и других задач.

Спутниковые навигационные комплексы, созданные впервые в США - «NAVSTAR» и в СССР - «ГЛОНАСС» (ГЛОбальная НАвигационная Спутниковая Система), вошли в международную практику решения военных, навигационных, инженерных и других проблем под названием "Global Positioning System» («GPS») или дословно - Глобальная Система Позиционирования (местоопределения). Поэтому в дальнейшем Спутниковые Навигационные Системы (СНС) будем называть, используя международную аббревиатуру («GPS»).

Возможность оперативного определения координат местоположения имеет столь существенное значение в жизни современного человечества, что системы «GPS» рассматривают как «Новое достояние цивилизации». Появление спутниковых навигационных систем, уже ставших доступными рядовому пользователю, безусловно, предопределит в ближайшем будущем качественное изменение содержания и методов производства большинства видов инженерно-геодезических работ.

Принципы функционирования «GPS» основаны на определении местоположения по расстояниям до группы высокоорбитальных навигационных искусственных спутников Земли, выполняющих роль точно координированных точек отсчета (подвижных пунктов геодезической сети).

Каждая из систем спутниковой навигации состоит из трех самостоятельных подсистем: А , В и С .

А - подсистема орбитального комплекса, состоящая из высокоорбитальных искусственных спутников Земля (ИЗС – рис. 8.1) и средств вывода их на орбиты. Каждый спутник имеет на борту несколько высокоточных атомных часов - эталонов частоты. Спутники постоянно транслируют координатные радиосигналы и навигационные сообщения и создают тем самым единое глобальное навигационное поле.



Создание в нашей стране орбитального комплекса «ГЛОНАСС» штатного состава из 24 навигационных спутников было начато в октябре 1982 г. и завершено в декабре 1995 г. Искусственные спутники «ГЛОНАСС» равномерно распределены в трех орбитальных плоскостях, разнесенных относительно друг друга на 120° (рис. 8.2 б ). Плоскостям соответствен­но присвоены номера 1, 2 и 3 с возрастанием в сторону вращения Земли, при этом номинальные значения абсолютных долгот идеальных плоско­стей зафиксированы:

215°15"00" + 120°(i-1), (8.1)

где i - номер орбитальной плоскости.

Номинальные расстояния между соседними спутниками «ГЛОНАСС» по аргументу широты составляют 45°. Спутникам 1-й орбитальной плос­кости присвоены номера с 1 по 8, спутникам 2-й орбитальной плоскости - с 9 по 16 и спутникам 3-й орбитальной плоскости - с 17 по 24. Орби­тальные плоскости сдвинуты относительно друг друга по аргументу ши­роты на 15°.

а ). Спутник NAVSTAR.

б ) Спутник ГЛОНАСС.

Рис. 8.1. Навигационные спутники.

а ) б )

Рис. 8.2. Спутниковые навигационные системы.

а ) – NAVSTAR; б ) – ГЛОНАСС.

Навигационные спутники системы NAVSTAR размещены в шести орбитальных плоскостях, по четыре спутника в каждой (рис. 8.2 б ).

Высота орбиты навигационных спутников системы «ГЛОНАСС»-19-100 км, системы «NAVSTAR»-20-180 км.

Период обращения спутников системы «ГЛОНАСС» - 11 часов 15 минут 44 секунды, системы «NAVSTAR» - 12 часов.

Наклонение орбиты системы «ГЛОНАСС» - 64,8°, системы «NAVSTAR» - 55,0°.

Такая конфигурация орбитальной структуры спутниковых навигаци­онных систем обеспечивает глобальную и непрерывную зоны действия системы, а также оптимальную геометрию взаимного расположения спутников для повышения точности определения координат.

Навигационные спутники систем «GPS» непрерывно излучают ра­диосигналы различной точности. Так, для системы «ГЛОНАСС» преду­смотрены навигационные сигналы двух типов:

Высокой точности (ВТ) - предназначен исключительно для решения задач Министерства Обороны РФ.

Стандартной точности (СТ) - доступен всем потребителям.

Для системы «NAVSTAR» предусмотрены навигационные сигналы трех типов:

Protected (P-code) - защищенный, предназначенный прежде всего для нужд МО США.

Selective Availability (S/A) - избирательной доступности, преднаме­ренно создавая значительный и непредсказуемый уход спутниковых ча­сов создает значительные ошибки в определении местоположения для общегражданского круга пользователей.

Clear Acquisition (С/А) - легкой распознаваемости, т. е. - это обще­гражданский код.

Б - наземная подсистема контроля и управления состоит из группы станций слежения, нескольких станций загрузки на ИЗС и главной стан­ции. Эта подсистема осуществляет мониторинг целостности системы и является первичным источником информации, поставляемой пользова­телям. Ее основными задачами являются:

Контроль за работой навигационных ИЗС;

Сбор информации для определения и прогноза орбит (эфемерид);

Формирование единой временной системы всего орбитального ком­плекса и ее синхронизация относительно Всемирного времени и экспор­тирование данных в память бортовых компьютеров навигационных ИЗС.

Орбитально - временная информация закладывается в память ИЗС дважды в сутки, что обеспечивает высокую точность навигационных оп­ределений.

В - подсистема пользователей состоит из комплекса аппаратно-про­граммных средств, реализующих основное назначение «GPS» - опреде­ление координат для геодезического применения.

Главными факторами широкого использования аппаратуры пользова­телей «GPS» являются:

Всепогодность;

Оперативность первого определения координат (менее 3 минут от включения приемника);

Непрерывность определения координат (каждые 0,5 с);

Малые габариты и вес приемников;

Малая энергоемкость;

Простота эксплуатации;

Высокая точность;

Сравнительно небольшая стоимость.

Данные позиционирования представляются в любом удобном для пользователя цифровом виде: в различных географических системах координат или в любой прямоугольной системе координат с возможностью описания и систематизации объектов позиционирования.

В настоящее время спутниковые навигационные системы уже нашли широкое применение в следующих областях: военной; на космическом, воздушном, морском, речном, автодорожном, железнодорожном и дру­гих видах транспорта; в геодезии, картографии, океанографии; при про­изводстве геофизических и геолого-разведочных работ; в лесном хозяй­стве и землеустройстве; рыболовном хозяйстве; в экологическом монито­ринге; в научно-исследовательских работах, в том числе, фундаменталь­ных и других сферах человеческой деятельности.

В части инженерной геодезии и инженерного дела, это безусловно, ре­волюционный прорыв в будущее, который влечет за собой как радикаль­ное изменение парка инженерно-геодезического оборудования, так и тех­нологий и методов производства работ.


Яценков В.С. Основы спутниковой навигации
Систематизирована информация о спутниковых навигационных системах GPS NAVSTAR и ГЛОНАСС. Изложена история разработки и создания систем, рассмотрены основные принципы их работы. Приведены характеристики и структура навигационных сигналов, данные о технических возможностях и параметрах действующих систем, даны определения основных понятий и терминов, перечислены наиболее познавательные ресурсы сети Интернет.
Для разработчиков и пользователей навигационных систем различного уровня подготовки, от любителей, эксплуатирующих приемники GPS в быту, до специалистов, использующих навигационные средства в повседневной работе. Может быть полезна студентам радиотехнических специальностей и аспирантам.

Скриншоты: оглавление

Доп. информация : ---

Мои раздачи литературы по ГЕО-наукам (Геодезия, Картография, Землеустройство, ГИС, ДЗЗ и др.)
Геодезия и Системы спутникового позиционирования


  • Инженерная геодезия : учебное пособие. В 2-х частях. / Е. С. Богомолова, М. Я. Брынь, В. А. Коугия и др.; под ред. В. А. Коугия. - СПб.: Петербургский государственный университет путей сообщения, 2006-2008. - 179 с.

  • Селиханович В.Г., Козлов В.П., Логинова Г.П. Практикум по геодезии : Учебное пособие / Под ред. Селиханович В.Г. 2–е изд., стереотипное. - М.: ООО ИД «Альянс», 2006. - 382 с.

  • Генике А.А., Побединский Г.Г. Глобальные спутниковые системы определения местоположения и их применение в геодезии . Изд. 2-е, перераб. и доп. - М.: Картгеоцентр, 2004. - 355 с.: ил.

  • Руководство пользователя по выполнению работ в системе координат 1995 года (СК-95) . ГКИНП (ГНТА)-06-278-04. - М: ЦНИИГАиК, 2004. - 89 с.

  • Инструкция по нивелированию I, II, III и IV классов . ГКИНП (ГНТА)-03-010-02. - М.: ЦНИИГАиК, 2003. - 135 с.

  • Хаметов Т.И. Геодезическое обеспечение проектирования, строительства и эксплуатации зданий, сооружений : Учеб. пособие. - М.: Изд-во АСВ, 2002. - 200 с.

  • Геодезия : учебное пособие для техникумов / Глинский С.П., Гречанинова Г.И., Данилевич В.М., Гвоздева В.А., Кощеев А.И., Морозов Б.Н. - М.: Картгеоцентр – Геодезиздат, 1995. - 483 с: ил.

  • Лукьянов В.Ф., Новак В.Е. и др. Лабораторный практикум по инженерной геодезии : Учебное пособие для ВУЗов. - М.: «Недра», 1990. - 336 с.

  • Новак В.Е., Лукьянов В.Ф. и др. Курс инженерной геодезии : Учебник для вузов под ред. проф. Новака В.Е. - М.: «Недра», 1989. - 432 с.

  • Лукьянов В.Ф., Новак В.Е., Ладонников В.Г. и др. Учебное пособие по геодезической практике . - М.: «Недра», 1986 - 236 с, с ил.

  • Закатов П.С. Курс высшей геодезии . - Изд. 4, перераб. и доп. - М.: «Недра», 1976. - 511 с.

  • Большаков В.Д., Васютинский И.Ю., Клюшин Е.Б. и др. Методы и приборы высокоточных геодезических измерений в строительстве . / Под ред. Большакова В.Д. - М.: «Недра», 1976, - 335 с.

  • Справочник геодезиста (в двух книгах) / Большаков В.Д., Левчук Г.П., Багратуни Г.В. и др.; под ред. Большакова В.Д., Левчука Г.П. Изд. 2, перераб. и доп. - М: «Недра», 1975. - 1056 с.

  • Голубева 3.С., Калошина О.В, Соколова И.И. Практикум по геодезии . Изд. 3-е, перераб. - М.: «Колос», 1969. - 240 с. с илл. (Учебники и учеб. пособия для высш. с.-х. учеб. заведений).

  • Красовский Ф.Н. Избранные сочинения : в 4-х томах. - М.: Геодезиздат, 1953-1956. - 2001 с.

  • Красовский Ф.Н. Руководство по высшей геодезии : Курс Геодезического факультета Московского Межевого Института. Часть I. - М.: Издание Геодезического Управления В.С.Н.Х. С.С.С.Р. и Московского Межевого Института, 1926. - 479 с.


Фотограмметрия, Топография и Картография

  • Серапинас Б.Б. Математическая картография : Учебник для вузов / Балис Балио Серапинас. - М.: Издательский центр «Академия», 2005. - 336 с.

  • Верещака Т.В. Топографические карты : научные основы содержания. - М.: МАИК «Наука/Интерпериодика», 2002. - 319 с.

  • Математическая основа карт . Глава III из книги: Берлянт А. М. Картография : Учебник для вузов. - М.: Аспект Пресс, 2002. - 336 с.

  • Инструкция по фотограмметрическим работам при создании цифровых топографических карт и планов . ГКИНП (ГНТА)–02-036-02. - М.: ЦНИИГАиК, 2002. - 49 с.

  • Южанинов В.С. Картография с основами топографии : Учебное пособие для вузов. - М.: Высшая школа, 2001. - 302 с.

  • Тикунов В.С. Моделирование в картографии : Учебник. - М.: Изд-во МГУ, 1997. - 405 с.

  • Урмаев М.С. Космическая фотограмметрия : Учебник для вузов. - М.: Недра, 1989. - 279 с: ил.

  • Составление и использование почвенных карт (Под редакцией кандидата сельскохозяйственных наук Кашанского А.Д.). - 2-е изд., перераб. и доп. - М.: Агропромиздат, 1987. - 273 с.: ил. - (Учебники и учебные пособия для студентов высших учебных заведений).

  • Лосяков Н.Н., Скворцов П.А., Каменецкий А.В. и др. Топографическое черчение : Учебник для вузов / Под редакцией кандидата технических наук Лосякова Н.Н. - М.: Недра, 1986. - 325 с., ил.

  • Билич Ю. С., Васмут А. С. Проектирование и составление карт : Учебник для вузов. - М.: Недра, 1984. - 364 с.


Землеустройство и Земельный кадастр

  • Варламов А.А., Гальченко С.А. Земельный кадастр (в 6-ти томах). Том 6. Географические и земельные информационные системы . - М.: КолосС, 2006. - 400 с. - (Учебники и учеб. пособия для студентов высш. учеб. заведений).

  • Единая система технологической документации Государственного земельного кадастра Российской Федерации. Система классификаторов для целей ведения государственного земельного кадастра . Государственный комитет Российской Федерации по земельной политике. - М.: Госкомзем России, 2000 г. - 182 с.

  • Комплексная система управления качеством проектных и изыскательских работ. Стандарты предприятия по оформлению графических материалов . - М.: Росземпроект, 1983 г. - 86 с. (СТП 71.x-82)

  • Инструкция по дешифрированию аэрофотоснимков и фотопланов в масштабах 1:10000 и 1:25000 для целей землеустройства, государственного учета земель и земельного кадастра . - М.: Минсельхоз СССР, ГУ Землепользования и Землеустройства, ВИСХАГИ, 1978. - 143 с.


Географические информационные системы (ГИС)

  • Попов И.В., Чикинев М.А. Эффективное использование ArcObjects . Методическое руководство. - Новосибирск: Изд-во СО РАН, 2003 г. - 160 c.

  • Геоинформатика / Иванников А.Д., Кулагин В.П., Тихонов А.Н., Цветков В.Я. - М.: МАКС Пресс, 2001. - 349 с.

  • Берлянт А.М., Кошкарев А.В. и др. Геоинформатика . Толковый словарь основных терминов. - М.: ГИС-Ассоциация, 1999. - 204 с.

  • ДеМерс Майкл Н. Географические Информационные Системы . Основы.: Пер. с англ. - М: Дата+, 1999. - 507 с.

  • Замай С.С., Якубайлик О.Э. Программное обеспечение и технологии геоинформационных систем : Учебное. пособие. - Красноярск: Краснояр. гос. ун-т, 1998. - 110 с.

  • Королев Ю.К. Общая геоинформатика. Часть I. Теоретическая геоинформатика . Выпуск 1. - М.: СП ООО Дата+, 1998. - 118 с.


Дистанционное зондирование Земли (ДЗЗ)

  • Медведев Е.М., Данилин И.М., Мельников С.Р. Лазерная локация земли и леса : Учебное пособие. - 2-е изд., перераб. и доп. - М.: Геолидар, Геоскосмос; Красноярск: Институт леса им. В.Н. Сукачева СО РАН, 2007. - 230 с.

  • Кашкин В.Б., Сухинин А.И. Дистанционное зондирование Земли из космоса . Цифровая обработка изображений: Учебное пособие. - М.: Логос, 2001. - 264 с.: ил.

  • Гарбук С.В., Гершензон В.Е. Космические системы дистанционного зондирования Земли . - М.: Издательство А и Б, 1997. - 296 с., ил.

  • Виноградов Б.В. Аэрокосмический мониторинг экосистем . - М.: Наука, 1984. - 320 с.

  • Дейвис Ш.М., Ландгребе Д.А., Филлипс Т.Л. и др. Дистанционное зондирование: количественный подход / Под ред. Ф. Свейна и Ш. Дейвис. Пер. с англ. - М.: Недра, 1983. - 415 с.

  • Востокова Е.А., Шевченко Л.А., Сущеня В.А. и др. Картографирование по космическим снимкам и охрана окружающей среды / Под ред. Востоковой Е.А, Злобина Л.И. (отв. ред.), Кельнера Ю.Г. - М.: «Недра», 1982. - 251 с.

  • Богомолов Л.А. Дешифрирование аэроснимков . - М.: «Недра», 1976. - 145 с.

  • Миллер В., Миллер К. Аэрофотогеология / Пер. с англ. Воеводы В.М. и Ильина А.В., под ред. Лунгерсгаузена Г.Ф. - М.: МИР, 1964. - 292 с., ил.

  • Богомолов Л.А. Топографическое дешифрирование природного ландшафта на аэроснимках . - М.: Госгеолтехиздат, 1963. - 198 с.


Навигация, Ориентирование и Определение местоположения

  • Найман В.С. GPS–навигаторы для путешественников, автомобилистов, яхтсменов = Лучшие GPS–навигаторы / Под научной редакцией Скрылева В.В. - М.: НТ Пресс, 2008. - 400 с.: ил.

  • Яценков В.С. Основы спутниковой навигации . Системы GPS NAVSTAR и ГЛОНАСС. - М: Горячая линия-Телеком, 2005. - 272 с: ил.

  • Громаков Ю.А., Северин А.В., Шевцов В.А. Технологии определения местоположения в GSM и UMTS : Учеб. пособие. - М.: Эко-Трендз, 2005. - 144 с: ил.

  • Соловьев Ю.А. Системы спутниковой навигации . - М.: Эко-Трендз, 2000. - 270 с.

  • Глобальная спутниковая радионавигационная система ГЛОНАСС / Под ред. Харисова В.Н., Перова А.И., Болдина В.А. - М.: ИПРЖР, 1998. - 400 с. : ил.

  • Шебшаевич В.С., Дмитриев П.П., Иванцевич И.В. и др. Сетевые спутниковые радионавигационные системы / Под ред. Шебшаевича В.С. - 2-е изд., перераб. и доп. - М.: Радио и связь, 1993. - 408 с,: ил.

  • Меньчуков А.Е. В мире ориентиров . Изд. 3, доп. - М.: «Мысль», 1966. - 284 с.

- «Говоря СПАСИБО, вы продлеваете жизнь торренту» (Dark_Ambient )

ВВЕДЕНИЕ

Используя Систему Глобального Позиционирования (GPS процесс используется для определения координат в любой точке мира), следующие два значения определяют точку на Земле(рис.1):

1. Первое – точное расположение(координаты долготы, широты и высоты) обеспечивается в диапазоне от 20 м до приблизительно 1 мм.

2. Прецизионное время (UTC), его точность лежит в диапазоне от 60 нс до примерно 5 нс.

Скорость и направление движения можно получить из этих координат. Значения координат и времени определяются посредством спутников Земли.

Рис.1 Основная функция спутниковой навигации

В 2007 году Система глобального позиционирования (GPS),

разработанная United States Department of Defense (DoD) была единственной полноценной рабочей системой GNSS. Быстро развивающаяся промышленность спутниковой навигации сосредоточена в основном на GPS системе, вот почему термины GPS и спутниковая навигация иногда подменяют друг друга. Данный документ рассмотрит и другие системы GNSS.

GPS(полное название: Система навигации и глобального позиционирования, NAVSTARGPS) была разработана U.S. Department of Defense (DoD) и может использоваться как гражданскими, так и военными. Гражданский сигнал SPS (стандартное позиционирование) может использоваться всеми, тогда как военный сигнал PPS(прецизионное позиционирование) может использоваться только специальными агентами. Первый спутник был помещен на орбиту 22 февраля 1978 г., а в настоящее время имеется 28 рабочих спутников на высоте 20 180 км на 6 различных орбитах. Их орбиты отклоняются на 55 0 к экватору, при этом последние 4 спутника обеспечивают радиосвязь с любой точкой планеты. Орбита каждого спутника Земли составляет примерно 12 часов, и он имеет 4 атомных синхронизатора на плате

Во время разработки системы GPS основной акцент был сделан на следующих трех аспектах:

1. Она должна обеспечить потребителей возможностью определять позицию, скорость и время в движении или в покое.

2. Она должна обеспечивать непрерывное 3-х мерное позиционирование с высокой степенью точности, независимо от погоды.

3. Она должна иметь возможность использования гражданским населением.

Основы спутниковой навигации

Введение

Через пять или 6 лет появится три независимых доступных GNSS системы. США продолжит обеспечивать GPS Россию и Европейский Союз, которые также добавят свои системы GLONASS и GLILEO. Все эти системы будут модернизированы с целью повышения надежности и

доступности для новых приложений2 .

Краткое руководство рассмотрит основные принципы спутниковой навигации и их применение в приложениях и технологиях. На GPS будет основной акцент в связи с промышленным стандартом, а

также будут рассмотрены такие разработки как Differential-GPS (DGPS), Assisted-GPS (AGPS) и

интерфейсы устройства в различных разделах. Все это сделано с целью обеспечить читателя фундаментальной информацией о столь увлекательной области.

Рис. 2 Запуск GPS спутника

1 Спутниковая навигация – это просто

Если Вам нравится. . .

o понимать, как определяется расстояние до молнии

o понимать, как работают основные функции спутниковой навигации

o знать, как много атомных синхронизаторов стоит на плате GPS спутника o знать, как определить позицию на карте

o понимать, почему необходимо 4 спутника для обеспечения позиционирования тогда эта глава для Вас!

1.1 Принцип измерения транзитного времени сигнала

Какое-то время в течение грозовой ночи Вы, несомненно, пытались понять, как далеко Вы находитесь - по вспышке молнии. Расстояние можно установить довольно легко (Рис. 3): расстояние = момент вспышки молнии (стартовое время) до появления грома (конечное время), умноженный на скорость звука (приблизительно 330 м/с.). Разница между стартовым и конечным временем и есть транзитное время.

Глаз опреде

Транзитное время

ляет стартовоевремя

Рис.3 Определение расстояния по вспышке молнии

Расстояние = транзитное время * скорость звука

Система GPS функционирует согласно такому же принципу. Для того чтобы вычислить точную позицию, нужно всего лишь измерить транзитное время сигнала между точкой наблюдения и четырьмя другими спутниками, чьи позиции известны.

Основы спутниковой навигации

1.1.1 Основные принципы спутниковой навигации

Все спутниковые навигационные системы используют общие принципы определения координат:

Спутники с известной позицией передают регулярный сигнал.

Здесь мы видим принципы, наиболее часто применяемые в простых моделях. Представим, что мы в машине и хотим определить свое местонахождение на длинной и прямой улице. В конце улицы есть радиопередатчик, посылающий тактовый импульс каждую секунду. В автомобиле есть часы, которые синхронизированы с часами радиопередатчика. Измеряя время от передатчика до машины, мы можем определить нашу позицию на улице (Рис. 4).

Распространение

Вычисление позиции

Передатчик сигнала с помощью погрешности по времени 1 мкс

Расстояние

Рис.4 В простейшем случае Расстояние определяется временем распространения

Расстояние D вычисляется путем умножения времени распространения ∆τ на скорость света c. D = ∆τ c

Поскольку синхронизация часов в машине с передатчиком неидеальна, существует разница между вычисленным расстоянием и фактическим. В навигации это некорректное значение звучит как псевдодиапазон. В нашем примере ошибка по времени составляет 1 микросекунду (1мкс) и определяет псевдодиапазон в 300 м.

Мы могли бы решить данную проблему, оснастив наш автомобиль точными атомными часами, но это значительно повлияет на наш бюджет. Другим решением будет использование второго синхронизированного передатчика, расстояние до которого известно. Измеряя оба времени распространения, можно точно определить расстояние, несмотря на неточные бортовые часы.

Расстояние А

Рис.5 С двумя передатчиками можно вычислить точную позиция несмотря на ошибки по времени

Как видно, чтобы точно вычислить позицию и время вдоль линии (принимаем, что линия продолжается только в одном направлении), нам необходимо два передатчика сигналов времени. Из этого мы можем сделать следующий вывод: при несинхронизированных бортовых часах, используемых при расчете позиции, необходимо число передатчиков сигналов времени, превышающее число неизвестных измерений на единицу.

На плоскости (два измерения) нам необходимо три передатчика сигналов времени.

в трехмерном пространстве нам необходимо четыре передатчика сигналов времени.

Системы спутниковой навигации и используют спутники как передатчики сигналов времени. Связь с последними 4 спутниками(Рис.6) необходима для определения трехмерных координат(Долгота, Широта, Высота) в течение всего времени. Мы рассмотрим это более детально в следующих разделах.

Рис.6 4 спутника необходимы для определения Долготы, Широты, Высоты и Времени

Основы спутниковой навигации

Спутниковая навигация это просто

1.1.2 Время прохождения сигнала

Системы спутниковой навигации используют высоко расположенные спутники, которые размещаются таким образом, чтобы из любой точки n на земле можно было провести линию, по крайней мере, к четырем спутникам.

Каждый этих спутников имеет до четырех атомных часов на борту. Атомные часы являются в настоящее время наиболее точным инструментом, теряя максимум одну секунду каждые 30,000 из 1,000,000 лет. Для того чтобы делать их еще более точными, делают коррекцию или синхронизацию из различных управляющих точек на Земле. Каждый спутник передает свою точную позицию и точное время на Землю с частотой 1575.42 МГц. Эти сигналы передаются со скоростью света (300,000 км/с) и, следовательно, потребуется приблизительно 67,3 мс для достижения земной поверхности прямо под спутником. Сигналу необходимо 3,33 на каждый дополнительный километр. Если Вы хотите установить вашу позицию на земле (или в море или где-то еще), все, что Вам нужно - точные часы. При сравнении времени получения спутникового сигнала со временем отправки возможно определить транзитное время этого сигнала (Рис 7).

Рис.7 Определение транзитного времени сигнала

Как в примере с машиной, Расстояние D до спутника можно определить, используя транзитное время: Расстояние = время в пути * скорость света

Основы спутниковой навигации

Спутниковая навигация это просто

1.1.3 Определение позиции на карте

Представьте себе, что Вы идете через обширное плато и хотите знать, где Вы. Два спутника, расположенные выше Вас передают свои времена на борту и позиции. Используя сигнальное транзитное время обоих спутников, Вы можете нарисовать два круга с радиусами D1 и D2 вокруг спутников. Каждый радиус соотносится с расстоянием, вычисленным спутником. Все возможные расстояния до спутника расположены на окружности круга. Если позиция выше спутников исключена, позиция приемника - в точке пересечения кругов под спутниками (Рис. 8).

Двух спутников достаточно, чтобы определить позицию на плоскости X/Y.

Рис.8 Позиция приемника в точке пересечения двух кругов

В действительности, позиция должна быть определена в трехмерном пространстве, а не на плоскости. Различие между плоскостью и трехмерным пространством состоит в дополнительном измерении (высота Z), дополнительный третий спутник должен быть доступен для определения действительной позиции. Если расстояния до трех спутников известны, то все возможные позиции расположены на поверхности трех сфер, чьи радиусы соответствуют рассчитанным расстояниям. Искомая позиция – место пересечения всех трех сфер (Рис. 9).

Рис. 9 Позиция определяется как точка пересечения трех сфер

Основы спутниковой навигации

Спутниковая навигация это просто

1.1.4 Появление и коррекция ошибки времени

Мы принимали до сих пор, что измерение транзитного времени сигнала было точным. Тем не менее, это не так. Приемнику для точного измерения времени необходима синхронизация. Если транзитное время имеет ошибку 1 нс – позиционная ошибка составит 300 м.Часы на борту всех трех спутников синхронизированы, при этом погрешность измерений транзитного времени складывается. Математика является единственной вещью, которая может нам помочь. Вспомним, что, если имеется N неизвестных переменных, то нам нужно N независимых уравнений.

Если измерение времени сопровождается постоянной неизвестной ошибкой, у нас будет четыре неизвестных переменных в 3-пространстве D:

Долгота(X)

Широта(Y)

Высота(Z)

Ошибка времени(∆t)

Из этого следует, что в 3-х мерном пространстве 4 спутника необходимы для определения точной позиции.

Спутниковые навигационные системы сконструированы таким образом, чтобы из любой точки на Земле было видно как минимум 4 спутника (Рис.10). Таким образом, несмотря на погрешность часов приемника и ошибок по времени, позиция вычисляется с точностью примерно 5 – 10 м.

Рис.10 4 спутника необходимы для определения позиции в 3-D пространстве

Основы спутниковой навигации

Спутниковая навигация это просто

2 GNSS Технология: Пример GPS

Если Вам нравится. . .

o понимать, почему необходимо 3 различных GPS сегмента o знать, что у каждого сегмента есть функция

o знать, как сделан GPS спутник

o знать, какого рода информация передается на Землю o понимать, как генерируется сигнал спутника

o понимать, как определяется транзитное время сигнала o понимать, какое значение имеет корреляция

o понимать, почему необходим минимальный период времени GPS для работы онлайн o знать, что такое фреймы и подфреймы

тогда эта глава для Вас!

2.1 Описание системы

следующих

разделах

рассмотрим

различные

сегменты GNSS технологии

Несущая L1

Тактовые импульсы -эфимерис -альманах -состояние -дата, время

Сегмент пользователя

Рис. 11 Три GNSS сегмента

Принятый эфимерис -вычисленный альманах -состояние спутника -коррекции времени

От наземной станции

Управляющий сегмент

Как видно из рисунка 11 есть однонаправленная связь между пространственным сегментом и сегментом пользователя. Управляющие станции на земле имеют двунаправленную связь со спутниками.

2.2 Пространственный сегмент

2.2.1 Перемещение спутника

Пространственный сегмент к настоящему времени состоит из 32 действующих спутников (Рис. 12) с орбитами в 6 различных плоскостях (от четырех до пяти спутников в плоскости). Они находятся на высоте 20,180 км над Земной поверхностью и наклонены на 550 к экватору. Каждый спутник совершает круг по орбите за 12 часов. Из-за вращения Земли, спутник будет в своем начальном положении (Рис. 13) после приблизительно 24 часов (23 часа 56 минут, чтобы быть точным).