Программа может хранить информацию в основной памяти компьютера двумя основными спо­собами. Первый из них использует глобальные и локальные переменные, включая массивы, струк­туры и классы. В случае глобальных и статических локальных переменных место хранения инфор­мации фиксируется на все время выполнения программы. В случае локальных переменных память выделяется в стеке. Хотя в Borland С++ работа с этими переменными реализована очень эффек­тивно, их использование требует от программиста знать заранее размер памяти, который потре­буется в ходе выполнения программы.

Вторым способом хранения информации служит использование системы динамического выде­ления памяти Borland С++. В этом методе память для хранения информации выделяется из сво­бодной области памяти по мере надобности и возвращается назад, т.е. освобождается, когда надобность в ней исчезла. Область свободной памяти лежит между областью памяти, где разме­щается программа, и стеком. Эта область называется кучей (heap) и используется для запросов на динамическое выделение памяти.

Преимуществом использования динамической памяти служит то, что одна и та же память мо­жет быть использована для хранения различной информации в процессе исполнения программы. Поскольку память выделяется для определенной цели и освобождается, когда ее использование завершилось, то можно использовать ту же самую память в другой момент времени для других целей в другой части программы. Другим преимуществом динамического выделения памяти явля­ется возможность создания с ее помощью связанных списков, двоичных деревьев и других дина­мических структур данных.

Ядром динамического выделения памяти языка С являются функции malloc() и free(), являющиеся частями стандартной библиотеки. Всякий раз, когда функцией malloc() осуществляется запрос на выделение памяти, выделяется порция имеющейся в наличии свободной памяти. Всякий раз, когда эта память освобождается с помощью функции free(), эта память возвращается назад системе.

Язык С++ определяет два оператора динамического выделения памя­ти - new и delete.

Стандарт ANSI С определяет только четыре функции динамического выделения памяти: calloc(), malloc(), free() и realloc(). Однако Borland С++ содержит несколько других функций динамичес­кого выделения памяти. При компиляции кода для современной 32-разрядной модели памяти, память являет­ся плоской и обычно используются только четыре стандартные функции выделения памяти.

Стандарт ANSI С определяет, что заголовочная информация, необходимая для динамического выделения памяти, содержится в файле stdlib.h. Однако Borland С++ позволяет использовать заго­ловочные файлы stdlib.h или alloc.h. Здесь мы используем заголовочный файл stdlib.h, поскольку это обеспечивает переносимость. Некоторые другие функции динамического выделения памяти требуют заголовочных файлов alloc.h, malloc.h или dos.h. Необходимо обращать особое внимание на то, какой заголовочный файл необходим для использования каждой функции.

Мы открыли для себя возможности динамического выделения памяти. Что это значит? Это значит то, что при динамическом выделении памяти, память резервируется не на этапе компиляции а на этапе выполнения программы. И это дает нам возможность выделять память более эффективно, в основном это касается массивов. С динамическим выделением память, нам нет необходимости заранее задавать размер массива, тем более, что не всегда известно, какой размер должен быть у массива. Далее рассмотрим каким же образом можно выделять память.

Выделение памяти в Си (функция malloc)

Функция malloc() определена в заголовочном файле stdlib.h , она используется для инициализации указателей необходимым объемом памяти. Память выделяется из сектора оперативной памяти доступного для любых программ, выполняемых на данной машине. Аргументом является количество байт памяти, которую необходимо выделить, возвращает функция — указатель на выделенный блок в памяти. Функция malloc() работает также как и любая другая функция, ничего нового.

Так как различные типы данных имеют разные требования к памяти, мы как-то должны научиться получить размер в байтах для данных разного типа. Например, нам нужен участок памяти под массив значений типа int — это один размер памяти, а если нам нужно выделить память под массив того же размера, но уже типа char — это другой размер. Поэтому нужно как-то вычислять размер памяти. Это может быть сделано с помощью операции sizeof() , которая принимает выражение и возвращает его размер. Например, sizeof(int) вернет количество байтов, необходимых для хранения значения типа int . Рассмотрим пример:

#include int *ptrVar = malloc(sizeof(int));

В этом примере, в строке 3 указателю ptrVar присваивается адрес на участок памяти, размер которого соответствует типу данных int . Автоматически, этот участок памяти становится недоступным для других программ. А это значит, что после того, как выделенная память станет ненужной, её нужно явно высвободить. Если же память не будет явно высвобождена, то по завершению работы программы, память так и не освободится для операционной системы, это называется утечкой памяти. Также можно определять размер выделяемой памяти, которую нужно выделить передавая пустой указатель, вот пример:

Int *ptrVar = malloc(sizeof(*ptrVar));

Что здесь происходит? Операция sizeof(*ptrVar) оценит размер участка памяти, на который ссылается указатель. Так как ptrVar является указателем на участок памяти типа int , то sizeof() вернет размер целого числа. То есть, по сути, по первой части определения указателя, вычисляется размер для второй части. Так зачем же это нам надо? Это может понадобиться, если вдруг необходимо поменять определение указателя, int , например, на float и тогда, нам не нужно менять тип данных в двух частях определения указателя. Достаточно будет того, что мы поменяем первую часть:

Float *ptrVar = malloc(sizeof(*ptrVar));

Как видите, в такой записи есть одна очень сильная сторона, мы не должны вызывать функцию malloc() с использованием sizeof(float) . Вместо этого мы передали в malloc() указатель на тип float , в таком случае, размер выделяемой памяти автоматически определится сам!

Особенно это пригодится, если выделять память потребуется далеко от определения указателя:

Float *ptrVar; /* . . . сто строк кода */ . . . ptrVar = malloc(sizeof(*ptrVar));

Если бы вы использовали конструкцию выделения памяти с операцией sizeof() , то вам бы пришлось находить в коде определение указателя, смотреть его тип данных и уже потом вы бы смогли правильно выделить память.

Высвобождение выделенной памяти

Высвобождение памяти выполняется с помощью функции free() . Вот пример:

Free(ptrVar);

После освобождения памяти, хорошей практикой является сброс указателя в нуль, то есть присвоить *ptrVar = 0 . Если указателю присвоить 0, указатель становится нулевым, другими словами, он уже никуда не указывает. Всегда после высвобождения памяти, присваивайте указателю 0, в противном случае, даже после высвобождения памяти, указатель все равно на неё указывает, а значит вы случайно можете нанести вред другим программам, которые, возможно будут использовать эту память, но вы даже ничего об этом не узнаете и будете думать, что программа работает корректно.

P.S.: Всем, кто увлекается видеомонтажом может быть интересен этот редактор видео Windows 7 . Видеоредактор называется Movavi, может кто-то уже с ним знаком или даже работал с ним. С помощью этой программы на русском языке, вы легко можете добавить видео с камеры, улучшить качество и наложить красивые видео эффекты.

Статическая память выделяется еще до начала работы программы, на стадии компиляции и сборки. Статические переменные имеют фиксированный адрес, известный до запуска программы и не изменяющийся в процессе ее работы. Статические переменные создаются и инициализируются до входа в функцию main , с которой начинается выполнение программы.

Существует два типа статических переменных:

  • глобальные переменные - это переменные, определенные вне функций , в описании которых отсутствует слово static . Обычно описания глобальных переменных, включающие слово extern , выносятся в заголовочные файлы (h-файлы). Слово extern означает, что переменная описывается, но не создается в данной точке программы. Определения глобальных переменных, т.е. описания без слова extern , помещаются в файлы реализации (c-файлы или cpp-файлы). Пример: глобальная переменная maxind описывается дважды:
    • в h-файле с помощью строки

      extern int maxind;

      это описание сообщает о наличии такой переменной, но не создает эту переменную!
    • в cpp-файле с помощью строки

      int maxind = 1000;

      это описание создает переменную maxind и присваивает ей начальное значение 1000 . Заметим, что стандарт языка не требует обязательного присвоения начальных значений глобальным переменным, но, тем не менее, это лучше делать всегда, иначе в переменной будет содержаться непредсказуемое значение (мусор, как говорят программисты). Инициализация всех глобальных переменных при их определении - это правило хорошего стиля.
    Глобальные переменные называются так потому, что они доступны в любой точке программы во всех ее файлах. Поэтому имена глобальных переменных должны быть достаточно длинными, чтобы избежать случайного совпадения имен двух разных переменных. Например, имена x или n для глобальной переменной не подходят;
  • статические переменные - это переменные, в описании которых присутствует слово static . Как правило, статические переменные описываются вне функций . Такие статические переменные во всем подобны глобальным, с одним исключением: область видимости статической переменной ограничена одним файлом, внутри которого она определена, - и, более того, ее можно использовать только после ее описания, т.е. ниже по тексту. По этой причине описания статических переменных обычно выносятся в начало файла. В отличие от глобальных переменных, статические переменные никогда не описываются в h-файлах (модификаторы extern и static конфликтуют между собой). Совет: используйте статические переменные, если нужно, чтобы они были доступны только для функций, описанных внутри одного и того же файла . По возможности не применяйте в таких ситуациях глобальные переменные, это позволит избежать конфликтов имен при реализации больших проектов, состоящих из сотен файлов.
    • Статическую переменную можно описать и внутри функции, хотя обычно так никто не делает. Переменная размещается не в стеке, а в статической памяти, т.е. ее нельзя использовать при рекурсии, а ее значение сохраняется между различными входами в функцию. Область видимости такой переменной ограничена телом функции, в которой она определена. В остальном она подобна статической или глобальной переменной. Заметим, что ключевое слово static в языке Си используется для двух различных целей:
      • как указание типа памяти: переменная располагается в статической памяти, а не в стеке;
      • как способ ограничить область видимости переменной рамками одного файла (в случае описания переменной вне функции).
  • Слово static может присутствовать и в заголовке функции. При этом оно используется только для того, чтобы ограничить область видимости имени функции рамками одного файла. Пример:

    static int gcd(int x, int y); // Прототип ф-ции. . . static int gcd(int x, int y) { // Реализация. . . }

    Совет: используйте модификатор static в заголовке функции, если известно, что функция будет вызываться лишь внутри одного файла. Слово static должно присутствовать как в описании прототипа функции, так и в заголовке функции при ее реализации.

Стековая, или локальная, память

Локальные, или стековые, переменные - это переменные, описанные внутри функции . Память для таких переменных выделяется в аппаратном стеке, см. раздел 2.3.2. Память выделяется в момент входа в функцию или блок и освобождается в момент выхода из функции или блока. При этом захват и освобождение памяти происходят практически мгновенно, т.к. компьютер только изменяет регистр, содержащий адрес вершины стека.

Локальные переменные можно использовать при рекурсии, поскольку при повторном входе в функцию в стеке создается новый набор локальных переменных, а предыдущий набор не разрушается. По этой же причине локальные переменные безопасны при использовании нитей в параллельном программировании (см. раздел 2.6.2). Программисты называют такое свойство функции реентерабельностью , от англ. re-enter able - возможность повторного входа. Это очень важное качество с точки зрения надежности и безопасности программы! Программа, работающая со статическими переменными, этим свойством не обладает, поэтому для защиты статических переменных приходится использовать механизмы синхронизации (см. 2.6.2), а логика программы резко усложняется. Всегда следует избегать использования глобальных и статических переменных, если можно обойтись локальными.

Недостатки локальных переменных являются продолжением их достоинств. Локальные переменные создаются при входе в функцию и исчезают после выхода из нее, поэтому их нельзя использовать в качестве данных, разделяемых между несколькими функциями. К тому же, размер аппаратного стека не бесконечен, стек может в один прекрасный момент переполниться (например, при глубокой рекурсии), что приведет к катастрофическому завершению программы. Поэтому локальные переменные не должны иметь большого размера. В частности, нельзя использовать большие массивы в качестве локальных переменных.

Динамическая память, или куча

Помимо статической и стековой памяти, существует еще практически неограниченный ресурс памяти, которая называется динамическая , или куча (heap ). Программа может захватывать участки динамической памяти нужного размера. После использования ранее захваченный участок динамической памяти следует освободить.

Под динамическую память отводится пространство виртуальной памяти процесса между статической памятью и стеком. (Механизм виртуальной памяти был рассмотрен в разделе 2.6.) Обычно стек располагается в старших адресах виртуальной памяти и растет в сторону уменьшения адресов (см. раздел 2.3). Программа и константные данные размещаются в младших адресах, выше располагаются статические переменные. Пространство выше статических переменных и ниже стека занимает динамическая память:

адрес содержимое памяти

код программы и данные,

защищенные от изменения

...

статические переменные

программы

динамическая память

max. адрес (2 32 -4)

стек

Структура динамической памяти автоматически поддерживается исполняющей системой языка Си или C++ . Динамическая память состоит из захваченных и свободных сегментов, каждому из которых предшествует описатель сегмента. При выполнении запроса на захват памяти исполняющая система производит поиск свободного сегмента достаточного размера и захватывает в нем отрезок требуемой длины. При освобождении сегмента памяти он помечается как свободный, при необходимости несколько подряд идущих свободных сегментов объединяются.

В языке Си для захвата и освобождения динамической памяти применяются стандартные функции malloc и free , описания их прототипов содержатся в стандартном заголовочном файле " stdlib.h ". (Имя malloc является сокращением от memory allocate - "захват памяти".) Прототипы этих функций выглядят следующим образом:

void *malloc(size_t n); // Захватить участок памяти // размером в n байт void free(void *p); // Освободить участок // памяти с адресом p

Здесь n - это размер захватываемого участка в байтах, size_t - имя одного из целочисленных типов, определяющих максимальный размер захватываемого участка. Тип size_t задается в стандартном заголовочном файле " stdlib.h " с помощью оператора typedef (см. c. 117). Это обеспечивает независимость текста Си-программы от используемой архитектуры. В 32-разрядной архитектуре тип size_t определяется как беззнаковое целое число:

typedef unsigned int size_t;

Функция malloc возвращает адрес захваченного участка памяти или ноль в случае неудачи (когда нет свободного участка достаточно большого размера). Функция free освобождает участок памяти с заданным адресом. Для задания адреса используется указатель общего типа void* . После вызова функции malloc его необходимо привести к указателю на конкретный тип, используя операцию приведения типа, см. раздел 3.4.11. Например, в следующем примере захватывается участок динамической памяти размером в 4000 байтов, его адрес присваивается указателю на массив из 1000 целых чисел:

int *a; // Указатель на массив целых чисел. . . a = (int *) malloc(1000 * sizeof(int));

Выражение в аргументе функции malloc равно 4000 , поскольку размер целого числа sizeof(int) равен четырем байтам. Для преобразования указателя используется операция приведения типа (int *) от указателя обобщенного типа к указателю на целое число.

Пример: печать n первых простых чисел

Рассмотрим пример, использующий захват динамической памяти. Требуется ввести целое цисло n и напечатать n первых простых чисел. (Простое число - это число, у которого нет нетривиальных делителей.) Используем следующий алгоритм: последовательно проверяем все нечетные числа, начиная с тройки (двойку рассматриваем отдельно). Делим очередное число на все простые числа, найденные на предыдущих шагах алгоритма и не превосходящие квадратного корня из проверяемого числа. Если оно не делится ни на одно из этих простых чисел, то само является простым; оно печатается и добавляется в массив найденных простых.

Поскольку требуемое количество простых чисел n до начала работы программы неизвестно, невозможно создать массив для их хранения в статической памяти. Выход состоит в том, чтобы захватывать пространство под массив в динамической памяти уже после ввода числа n . Вот полный текст программы:

#include #include #include int main() { int n; // Требуемое количество простых чисел int k; // Текущее количество найденных простых чисел int *a; // Указатель на массив найденных простых int p; // Очередное проверяемое число int r; // Целая часть квадратного корня из p int i; // Индекс простого делителя bool prime; // Признак простоты printf("Введите число простых: "); scanf("%d", &n); if (n <= 0) // Некорректное значение => return 1; // завершаем работу с кодом ошибки // Захватываем память под массив простых чисел a = (int *) malloc(n * sizeof(int)); a = 2; k = 1; // Добавляем двойку в массив printf("%d ", a); // и печатаем ее p = 3; while (k < n) { // Проверяем число p на простоту r = (int)(// Целая часть корня sqrt((double) p) + 0.001); i = 0; prime = true; while (i < k && a[i] <= r) { if (p % a[i] == 0) { // p делится на a[i] prime = false; // => p не простое, break; // выходим из цикла } ++i; // К следующему простому делителю } if (prime) { // Если нашли простое число, a[k] = p; // то добавляем его в массив ++k; // Увеличиваем число простых printf("%d ", p); // Печатаем простое число if (k % 5 == 0) { // Переход на новую строку printf("\n"); // после каждых пяти чисел } } p += 2; // К следующему нечетному числу } if (k % 5 != 0) { printf("\n"); // Перевести строку } // Освобождаем динамическую память free(a); return 0; }

Пример работы данной программы:

Введите число простых: 50 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229

Операторы new и delete языка C++

В языке C++ для захвата и освобождения динамической памяти используются операторы new и delete . Они являются частью языка C++ , в отличие от функций malloc и free , входящих в библиотеку стандартных функций Си.

Пусть T - некоторый тип языка Си или C++ , p - указатель на объект типа T . Тогда для захвата памяти размером в один элемент типа T используется оператор new :

T *p; p = new T;

Например, для захвата восьми байтов под вещественное число типа double используется фрагмент

double *p; p = new double;

При использовании new , в отличие от malloc , не нужно приводить указатель от типа void* к нужному типу: оператор new возвращает указатель на тип, записанный после слова new . Сравните два эквивалентных фрагмента на Си и C++ .

    хранит глобальные переменные и константы;

    размер определяется при компиляции.

    Стек (stack)

    хранит локальные переменные, аргументы функций и промежуточные значения вычислений;

    размер определяется при запуске программы (обычно выделяется 4 Мб).

    Куча (heap)

    динамически распределяемая память;

    ОС выделяет память по частям (по мере необходимости).

Динамически распределяемую память следует использовать в случае если мы заранее (на момент написания программы) не знаем сколько памяти нам понадобится (например, размер массива зависит от того, что введет пользователь во время работы программы) и при работе с большими объемами данных.

Динамическая память, называемая также "кучей", выделяется явно по запросу программы из ресурсов операционной системы и контролируется указателем. Она не инициализируется автоматически и должна быть явно освобождена. В отличие от статической и автоматической памяти динамическая память практически не ограничена (ограничена лишь размером оперативной памяти) и может меняться в процессе работы программы

Работа с динамической памятью в с

Для работы с динамической памятью в языке С используются следующие функции: malloc, calloc, free, realloc . Рассмотрим их подробнее.

    Выделение (захват памяти) : void *malloc(size_t size);

В качестве входного параметра функция принимает размер памяти, которую требуется выделить. Возвращаемым значением является указатель на выделенный в куче участок памяти. Если ОС не смогла выделить память (например, памяти не хватило), то malloc возвращает 0.

    После окончания работы с выделенной динамически памятью нужно освободить ее. Для этой цели используется функция free, которая возвращает память под управление ОС: void free(void *ptr);

Еслидинамическая памятьне освобождена до окончания программы, то она освобождается автоматически при завершении программы. Тем не менее, явное освобождение ставшей ненужной памяти является признаком хорошего стиля программирования.

Пример: // выделения памяти под 1 000 элементов типа int

int * p = (int *) malloc(1000*sizeof(int));

if (p==NULL) cout<< "\n память не выделена";

free (p); // возврат памяти в кучу

2. Выделение (захват памяти) : void *calloc(size_t nmemb, size_t size);

Функция работает аналогично malloc, но отличается синтаксисом (вместо размера выделяемой памяти нужно задать количество элементов и размер одного элемента) и тем, что выделенная память будет обнулена. Например, после выполнения int * p = (int *) calloc(1000, sizeof(int)) p будет указывать на начало массива типа int из 1000 элементов, инициализированных нулями.

3. Изменение размера памяти:void *realloc(void *ptr, size_t size);

Функция изменяет размер выделенной памяти (на которую указывает ptr, полученный из вызова malloc, calloc или realloc ). Если размер, указанный в параметре size больше, чем тот, который был выделен под указатель ptr, то проверяется, есть ли возможность выделить недостающие ячейки памяти подряд с уже выделенными. Если места недостаточно, то выделяется новый участок памяти размером size и данные по указателю ptr копируются в начало нового участка.

В процессе выполнения программы участок динамической памяти доступен везде, где доступен указатель, адресующий этот участок. Таким образом, возможны следующие три варианта работы с динамической памятью, выделяемой в некотором блоке (например, в теле неглавной функции).

    Указатель (на участок динамической памяти) определен как локальный объект автоматической памяти. В этом случае выделенная память будет недоступна при выходе за пределы блока локализации указателя, и ее нужно освободить перед выходом из блока.

{ int* p= (int *) calloc(n, sizeof(int))

free (p); // освобождение дин. памяти

    Указатель определен как локальный объект статической памяти. Динамическая память, выделенная однократно в блоке, доступна через указатель при каждом повторном входе в блок. Память нужно освободить только по окончании ее использования.

{static int* p = (int *) calloc(n, sizeof(int));

p= (int *) calloc(n, sizeof(int));

f(50); //выделение дин. памяти с последующим освобождением

f1(100); //выделение дин. памяти (первое обращение)

f1(100); //работа с дин. памятью

f1 (0); // освобождение дин. памяти

    Указатель является глобальным объектом по отношению к блоку. Динамическая память доступна во всех блоках, где "виден" указатель. Память нужно освободить только по окончании ее использования

int* pG; //рабочий указатель для дин. памяти (глобальная переменная)

void init (int size)

for (i=0; i< size; i++) //цикл ввода чисел

{ printf("x[%d]=",i);

scanf("%d", &pG[i]);

int sum (int size)

for (i=0; i< size; i++) //цикл суммирования

// выделение памяти

pG= (int *) calloc(n, sizeof(int));

//работа с дин.памятью

printf(\ns=%d\n”,sum(n));

free (pG); pG=NULL; // освобождение памяти

Работа с динамической памятью в С++

В С++ есть свой механизм выделения и освобождения памяти - это функции new и delete. Пример использования new : int * p = new int; // выделение памяти под 1000 эл-тов Т.е. при использовании функции new не нужно приводить указатель и не нужно использовать sizeof(). Освобождение выделенной при помощи new памяти осуществляется посредством следующего вызова: delete p; Если требуется выделить память под один элемент, то можно использовать int * q = new int; или int * q = new int(10); // выделенный int проинициализируется значением 10 в этом случае удаление будет выглядеть следующим образом: delete q;

С++ поддерживает три основных типа выделения (или ещё «распределения» ) памяти , с двумя из которых, мы уже знакомы:

Статическое выделение памяти выполняется для и переменных. Память выделяется один раз, при запуске программы, и сохраняется на протяжении работы всей программы.

Автоматическое выделение памяти выполняется для и . Память выделяется при входе в блок, в котором находятся эти переменные, и удаляется при выходе из него.

Динамическое выделение памяти является темой этого урока.

Динамическое выделение переменных

Как статическое, так и автоматическое распределение памяти имеют два общих свойства:

Как работает динамическое выделение памяти?

На вашем компьютере имеется память (возможно, большая её часть), которая доступна для использования программами. При запуске программы ваша операционная система загружает эту программу в некоторую часть этой памяти. И эта память, используемая вашей программой, разделена на несколько частей, каждая из которых выполняет определённую задачу. Одна часть содержит ваш код, другая используется для выполнения обычных операций (отслеживание вызываемых функций, создание и уничтожение глобальных и локальных переменных и т.д.). Мы поговорим об этом позже. Тем не менее, большая часть доступной памяти просто находится там, ожидая запросов на выделение от программ.

Когда вы динамически выделяете память, то вы просите операционную систему зарезервировать часть этой памяти для использования вашей программой. Если ОС может выполнить этот запрос, то возвращается адрес этой памяти обратно в вашу программу. С этого момента и в дальнейшем ваша программа сможет использовать эту память, как только пожелает. Когда вы уже выполнили всё, что было необходимо, с этой памятью, то её нужно вернуть обратно в операционную систему, для распределения между другими запросами.

В отличие от статического или автоматического выделения памяти, программа самостоятельно отвечает за запрос и обратный возврат динамически выделенной памяти.

Освобождение памяти

Когда вы динамически выделяете переменную, то вы также можете её инициализировать посредством или uniform инициализации (в С++11):

int *ptr1 = new int (7); // используем прямую инициализацию int *ptr2 = new int { 8 }; // используем uniform инициализацию

Когда уже всё, что нужно было, выполнено с динамически выделенной переменной - нужно явно указать С++ освободить эту память. Для переменных это выполняется с помощью оператора delete :

// Предположим, что ptr ранее уже был выделен с помощью оператора new delete ptr; // возвращаем память, на которую указывал ptr, обратно в операционную систему ptr = 0; // делаем ptr нулевым указателем (используйте nullptr вместо 0 в C++11)

Оператор delete на самом деле ничего не удаляет. Он просто возвращает память, которая была выделена ранее, обратно в операционную систему. Затем операционная система может переназначить эту память другому приложению (или этому же снова).

Хотя может показаться, что мы удаляем переменную , но это не так! Переменная-указатель по-прежнему имеет ту же область видимости, что и раньше, и ей можно присвоить новое значение, как и любой другой переменной.

Обратите внимание, удаление указателя, не указывающего на динамически выделенную память, может привести к проблемам.

Висячие указатели

C++ не предоставляет никаких гарантий относительно того, что произойдёт с содержимым освобождённой памяти или со значением удаляемого указателя. В большинстве случаев память, возвращаемая операционной системе, будет содержать те же значения, которые были у неё до освобождения , а указатель так и останется указывать на только уже освобождённую (удалённую) память.

Указатель, указывающий на освобождённую память, называется висячим указателем . Разыменование или удаление висячего указателя приведёт к неожиданным результатам. Рассмотрим следующую программу:

#include int main() { int *ptr = new int; *ptr = 8; // помещаем значение в выделенную ячейку памяти delete ptr; // возвращаем память обратно в операционную систему. ptr теперь является висячим указателем std::cout << *ptr; // разыменование висячего указателя приведёт к неожиданным результатам delete ptr; // попытка освободить память снова приведёт к неожиданным результатам также return 0; }

#include

int main ()

int * ptr = new int ; // динамически выделяем целочисленную переменную

* ptr = 8 ; // помещаем значение в выделенную ячейку памяти

delete ptr ; // возвращаем память обратно в операционную систему. ptr теперь является висячим указателем

std :: cout << * ptr ; // разыменование висячего указателя приведёт к неожиданным результатам

delete ptr ; // попытка освободить память снова приведёт к неожиданным результатам также

return 0 ;

В программе выше значение 8, которое ранее было присвоено динамической переменной, после освобождения может и далее находиться там, а может и нет. Также возможно, что освобождённая память уже могла быть выделена другому приложению (или для собственного использования операционной системы), и попытка доступа к ней приведёт к тому, что операционная система автоматически прекратит выполнение вашей программы.

Процесс освобождения памяти может также привести и к созданию нескольких висячих указателей. Рассмотрим следующий пример:

#include int main() { int *ptr = new int; // динамически выделяем целочисленную переменную int *otherPtr = ptr; // otherPtr теперь указывает на ту же самую выделенную память, что и ptr delete ptr; // возвращаем память обратно в операционную систему. ptr и otherPtr теперь висячие указатели ptr = 0; // ptr теперь уже nullptr // Однако otherPtr по-прежнему является висячим указателем! return 0; }

#include

int main ()

int * ptr = new int ; // динамически выделяем целочисленную переменную

int * otherPtr = ptr ; // otherPtr теперь указывает на ту же самую выделенную память, что и ptr

delete ptr ; // возвращаем память обратно в операционную систему. ptr и otherPtr теперь висячие указатели

ptr = 0 ; // ptr теперь уже nullptr

// Однако otherPtr по-прежнему является висячим указателем!

return 0 ;

Во-первых, старайтесь избегать ситуаций, когда несколько указателей указывают на одну и ту же часть выделенной памяти. Если это невозможно, то проясните, какой указатель из всех «владеет» памятью (и отвечает за её удаление), а какие указатели просто получают доступ к ней.

Во-вторых, когда вы удаляете указатель, и, если он не выходит из сразу же после удаления, то его нужно сделать нулевым, т.е. присвоить значение 0 (или в С++11). Под «выходом из области видимости сразу же после удаления» имеется в виду, что вы удаляете указатель в самом конце блока, в котором он объявлен.

Правило: Присваивайте удалённым указателям значение 0 (или nullptr в C++11), если они не выходят из области видимости сразу же после удаления.

Оператор new

При запросе памяти из операционной системы в редких случаях она может быть не доступной (т.е. её может и не быть в наличии).

По умолчанию, если оператор new не сработал, память не выделилась, то генерируется исключение bad_alloc . Если это исключение будет неправильно обработано (а именно так и будет, поскольку мы ещё не рассматривали исключения и их обработку), то программа просто прекратит своё выполнение (произойдёт сбой) с ошибкой необработанного исключения.

Во многих случаях процесс генерации исключения оператором new (как и сбой программы) нежелателен, поэтому есть альтернативная форма оператора new, которая возвращает нулевой указатель, если память не может быть выделена. Нужно просто добавить константу std::nothrow между ключевым словом new и типом данных:

int *value = new (std::nothrow) int; // указатель value станет нулевым, если динамическое выделение целочисленной переменной не выполнится

В примере выше, если new не возвратит указатель с динамически выделенной памятью, то возвратится нулевой указатель.

Разыменовывать его также не рекомендуется, так как это приведёт к неожиданным результатам (скорее всего, к сбою в программе). Поэтому наилучшей практикой является проверка всех запросов на выделение памяти, для обеспечения того, что эти запросы будут выполнены успешно и память выделится:

int *value = new (std::nothrow) int; // запрос на выделение динамической памяти для целочисленного значения if (!value) // обрабатываем случай, когда new возвращает null (т.е. память не выделяется) { // Обработка этого случая std::cout << "Could not allocate memory"; }

Поскольку не выделение памяти оператором new происходит крайне редко, то обычно программисты забывают выполнять эту проверку!

Нулевые указатели и динамическое выделение памяти

Нулевые указатели (указатели со значением 0 или nullptr) особенно полезны в процессе динамического выделения памяти. Их наличие как бы сообщаем нам: «Этому указателю не выделено никакой памяти». А это, в свою очередь, можно использовать для выполнения условного выделения памяти:

// Если ptr-у до сих пор не выделено памяти, то выделяем её if (!ptr) ptr = new int;

Удаление нулевого указателя ни на что не влияет. Таким образом, в следующем нет необходимости:

if (ptr) delete ptr;

if (ptr )

delete ptr ;

Вместо этого вы можете просто написать:

delete ptr ;

Если ptr не является нулевым, то динамически выделенная переменная будет удалена. Если значением указателя является нуль, то ничего не произойдёт.

Утечка памяти

Динамически выделенная память не имеет области видимости, т.е. она остаётся выделенной до тех пор, пока не будет явно освобождена или пока ваша программа не завершит своё выполнение (и операционная система очистит все буфера памяти самостоятельно). Однако указатели, используемые для хранения динамически выделенных адресов памяти, следуют правилам области видимости обычных переменных. Это несоответствие может вызвать интересное поведение. Например:

void doSomething() { int *ptr = new int; }