Стремительное развитие технологий внесли в нашу жизнь повсеместное использование раций. Их можно используют повсеместно. На сегодняшний день существует два основных вида раций: аналоговые и цифровые.
Примечательно, что аналоговые рации с 1933 года использовались для гражданской связи, а для военных целей их начали применять на двадцать лет ранее. С тех пор они конечно подверглись всевозможным улучшениям и усовершенствованиям. Теперь аналоговые рации – предел совершенства. Однако появление цифровых раций совершило грандиозный переворот в радио технологиях.
Если сравнивать аналоговые и цифровые устройства, то они существенно отличаются не только методом подачи сигнала, а и качеством звука, и соотношением цены. Но, невзирая на явные преимущества цифровых приборов, они никогда не смогут полностью заменить аналоговые рации. Их по-прежнему используют в разных сферах жизнедеятельности.

Цифровой и аналоговый сигнал: сравнительная характеристика

В основном аналоговые рации используют частотную модуляцию, то есть FM волны. Это вид модуляции, при которой сигнал звука управляет частотой несущего колебания. Стоимость аналоговой рации невысока благодаря тому, что удалось интегрировать данную систему всего лишь в один чип. Аналоговый сигнал используют во многих современных рациях, однако появление цифровых систем, снизило их популярность.
Цифровой сигнал - представлен двоичными числами 0 и 1. Цифровые методы передачи гарантируют передачу всех необходимых данных за счет коррекции ошибок и благодаря контрольным битам. Алгоритмы программного обеспечения прекрасно отличают фоновый шум от полезного сигнала.
Цифровая беспроводная передача данных гарантирует такую же надежную доставку информации, как и проводная система.

Рация – востребованное средство связи?

Существует мнение, что рации – умирающая технология. На самом деле, оно ошибочно. Рации по-прежнему остаются востребованным и популярным средством связи так, как позволяют:
  • Мгновенно обмениваться сообщениями
  • Разговаривать одновременно с несколькими абонентами
  • Долговечны в эксплуатации, и работают в любых условиях
Эти средства связи используют повсеместно: в промышленности, бизнесе, охранных структурах и в правительстве, в армии.
Цифровые и аналоговые устройства имеют практически одинаковые функции, но отличия у них существенные.

Аналоговые рации: преимущества и недостатки

Преимуществами аналоговых раций смело можно считать:
  • Звук передается незакодированным, что очень нравится большинству пользователей
  • Огромный ассортимент разнообразных моделей и выбор всевозможных аксессуаров
  • Простота эксплуатации и понимание пользователями использование частот
К недостаткам аналоговых раций можно отнести следующее:
  • На одном канале можно вести только один разговор одновременно
  • Необходимость в наличии передатчика и приемника, специально настроенных на одну частоту
  • Невозможность использования программ, разработанных для бизнеса

Цифровые рации: преимущества и недостатки

К преимуществам цифровых раций относится:
  • Отличное подавление шумов
  • Прекрасное качество звука на любом расстоянии
  • Возможность на одном канале вести несколько разговоров одновременно
  • Возможность передачи коротких сообщений
  • Высокая плотность каналов
  • Сигналы принимаются стандартными антеннами
  • Цифровая обработка снижает фоновый шум
  • Наличие программного обеспечения
  • Цифровая платформа позволяет использовать и аналоговую и цифровую рации одновременно
  • Можно отслеживать перемещение собеседников в одной сети
Недостатки:
  • Высокая стоимость
  • Длительное обучение использованию
  • Радиочастотные шумы мешают цифровым сигналом, может возникнуть ошибка

Из всего выше перечисленного можно сделать вывод, что цифровые радиостанции отличаются от аналоговых наличием более высоких эксплуатационных и функциональных характеристик. Главное преимущество цифровых устройств – более высокая устойчивость сигнала при наличии помех. Поэтому они становятся популярными.

Отличие аналоговой и цифровой связи.
Имея дело с радиосвязью, очень часто приходится сталкиваться с такими терминами, как «аналоговый сигнал» и «цифровой сигнал» . Для специалистов в этих словах нет никакой тайны, но для людей несведущих разница между «цифрой» и «аналогом» может быть совсем неведомой. А между тем разница есть и весьма существенная.
Итак. Радиосвязь это всегда передача информации (речевой, СМС, телесигнализации) между двумя абонентами источником сигнала передатчиком (Радиостанцией, репитером, базовой станцией) и приемником.
Когда мы говорим о сигнале, то обычно подразумеваем электромагнитные колебания, наводящие ЭДС и вызывающие колебания тока в антенне приемника. Далее приемное устройство – переводит полученные колебания обратно в сигнал звуковой частоты и выводит на динамик.
В любом случае сигнал передатчика можно представить как в цифровой, так и в аналоговой форме. Ведь, к примеру, сам по себе звук – это аналоговый сигнал. На радиостанции звук, воспринимаемый микрофоном, преобразуется в уже упоминавшиеся электромагнитные колебания. Чем выше частота звука – тем выше частота колебаний на выходе, а чем громче говорит диктор – тем больше амплитуда.
Получившиеся электромагнитные колебания, или волны, распространяются в пространстве с помощью передаточной антенны. Чтобы эфир не забивался низкочастотными помехами, и чтобы у разных радиостанций была возможность работать параллельно, не мешая друг другу, колебания, получившиеся от воздействия звука, суммируют, то есть «накладывают» на другие колебания, имеющие постоянную частоту. Последнюю частоту принято называть «несущей», и именно на ее восприятие мы настраиваем свой радиоприемник, чтобы «поймать» аналоговый сигнал радиостанции.
В приемнике происходит обратный процесс: несущая частота отделяется, а электромагнитные колебания, полученные антенной, преобразуются в колебания звука, и из динамика слышится информация которую хотел сообщить передавший сообщение.
В процессе передачи звукового сигнала от радиостанции к приемнику могут возникнуть сторонние помехи, частота и амплитуда могут измениться, что, конечно же, отразится на звуках, издаваемых радиоприемником. Наконец, и сами передатчик и приемник во время преобразования сигнала вносят некоторую погрешность. Поэтому звук, воспроизводимый аналоговым радиоприемником, всегда имеет некоторые искажения. Голос может вполне воспроизводиться, несмотря на изменения, но фоном будет шипение или даже какие-то хрипы, вызванные помехами. Чем менее уверенным будет прием, тем громче и отчетливее будут эти посторонние шумовые эффекты.

Вдобавок эфирный аналоговый сигнал имеет очень слабую степень защиты от постороннего доступа. Для общественных радиостанций это, конечно, не имеет никакого значения. Но во время пользования первыми мобильными телефонами был один неприятный момент, связанный с тем, что почти любой посторонний радиоприемник мог быть легко настроен на нужную волну для подслушивания вашего телефонного разговора.

Для защиты от этого используют так называемое «тонирование» сигнала или по другому система CTCSS (Continuous Tone-Coded Squelch System) система шумоподавления, кодированная непрерывным тоном или система идентификации сигнала «свой/чужой», предназначенная разделять пользователей, работающих в одном частотном диапазоне, на группы. Пользователи (корреспонденты) из одной группы могут слышать друг друга благодаря идентификационному коду. Объясняя доступно, принцип действия данной системы таков. Вместе с передаваемой информацией в эфир отправляют также дополнительный сигнал (или по другому тон). Приемник, помимо несущей, распознает при соответствующей настойке этот тон и принимает сигнал. Если же в рации –приемнике тон не настроен, то приема сигнала не происходит. Стандартов шифрования существует достаточное большое количество отличающаяся для различных производителей.
Такие недостатки есть у аналогового эфирного вещания. Из-за них, к примеру, телевидение в относительно скором времени обещает стать полностью цифровым.

Цифровая связь и вещания считаются более защищенными от помех и от внешних воздействий. Все дело в том, что при использовании «цифры» аналоговый сигнал с микрофона на передающей станции зашифровывается в цифровой код. Нет, конечно, в окружающее пространство не распространяется поток цифр и чисел. Просто звуку определенной частоты и громкости присваивается код из радиоимпульсов. Продолжительность и частота импульсов задана заранее – она одна и у передатчика, и у приемника. Наличие импульса соответствует единице, отсутствие – нулю. Поэтому такая связь и получила название «цифровая».
Устройство, преобразующее аналоговый сигнал в цифровой код, называется аналого-цифровым преобразователем (АЦП) . А устройство, установленное в приемнике, и преобразующее код в аналоговый сигнал, соответствующий голосу вашего знакомого в динамике сотового телефона стандарта GSM, называется цифро-аналоговый преобразователь (ЦАП).
Во время передачи цифрового сигнала ошибки и искажения практически исключены. Если импульс станет немного сильнее, продолжительнее, или наоборот, то он все равно будет распознан системой как единица. А нуль останется нулем, даже если на его месте возникнет какой-то случайный слабый сигнал. Для АЦП и ЦАП не существует других значений, как 0,2 или 0,9 – только нуль и единица. Поэтому помехи на цифровую связь и вещание почти не оказывают влияния.
Более того, «цифра» является и более защищенной от постороннего доступа. Ведь, чтобы ЦАП устройства смог расшифровать сигнал, необходимо, чтобы он «знал» код расшифровки. АЦП вместе с сигналом может передавать и цифровой адрес устройства, выбранного в качестве приемника. Таким образом, даже если радиосигнал и будет перехвачен, он не сможет быть распознан из-за отсутствия как минимум части кода. Это особенно актуально для связи.
Итак, отличия цифрового и аналогового сигналов :
1) Аналоговый сигнал может быть искажен помехами, а цифровой сигнал может быть или забит помехами совсем, или приходить без искажений. Цифровой сигнал или точно есть, или полностью отсутствует (или нуль, или единица).
2) Аналоговый сигнал доступен для восприятия всеми устройствами, работающими по тому же принципу, что и передатчик. Цифровой сигнал надежно защищен кодом, его трудно перехватить, если вам он не предназначается.

Помимо чисто аналоговых и чисто цифровых станций, существуют и радиостанции поддерживающие как аналоговый так и цифровой режим. Они предназначены для перехода с аналоговой на цифровую связь.
Итак имея в распоряжении парк аналоговых радиостанций, вы можете постепенно перейти на цифровой стандарт связи.
Например, изначально вы строили систему связи на Радиостанциях Байкал 30.
Напомню, что это аналоговая станция с 16 каналами.

Но идет время, и станция перестает устраивать Вас, как пользователя. Да, она надежная, да мощная, да с хорошим аккумулятором до 2600 мА/ч. Но при расширении парка радиостанций более чем на 100 человек, а особенно при работе в группах её 16 каналов начинает не хватать.
Вам совершенно не обязательно сразу бежать и покупать радиостанции цифрового стандарта. Большинство производителей, намеренно вводят модель с наличием аналогового режима передачи.
То есть вы можете поэтапно переходить на например Байкал -501 или Vertex-EVX531 сохраняя существующую систему связи в рабочем состоянии.

Плюсы такого перехода неоспоримы.
Вы получаете станцию работающую
1) дольше (в цифровом режиме меньше потребление.)
2) Имеющую большее количество функций (групповой вызов, одинокий работник)
3) 32 канала памяти.
То есть вы фактически создаете изначально 2 базы каналов. Под новые закупленные станции (цифровые каналы) и базу каналов содействия с существующими станциями (аналоговые каналы). Постепенно по мере закупки оборудования вы будете сокращать парк радиостанций второго банка и увеличивать – первого.
В конечном итоге вы достигнете поставленной задачи – перевести полностью вашу базу на цифровой стандарт связи.
Хорошим дополнением и расширением к любой базе может послужить цифровой ретранслятор Yaesu Fusion DR-1


Это двухдиапазонный (144/430MHz) ретранслятор, который поддерживает аналоговую FM связь, а также одновременно цифровой протокол System Fusion в пределах частотного диапазона 12.5кГц. Мы уверены, что внедрение новейшей DR-1X станет рассветом нашей новой и впечатляющей многофункциональной системы System Fusion.
Одной из ключевых возможностей System Fusion является функция AMS (автоматический выбор режима) , которая мгновенно распознает принимается ли сигнал в режиме V/D, режиме голосовой связи или режиме данных FR аналоговом FM или цифровом C4FM, и автоматически переключается на соответствующий. Таким образом, благодаря нашим цифровым трансиверам FT1DR и FTM-400DR System Fusion ,чтобы поддерживать связь с аналоговыми FM радиостанциями больше нет необходимости каждый раз вручную переключать режимы,.
На репитере DR-1X, AMS можно настроить так, чтобы входящий цифровой C4FM сигнал преобразовывался в аналоговый FM и ретранслировался, таким образом позволяя поддерживать связь между цифровым и аналоговым трансиверами. AMS также можно настроить на автоматическую ретрансляцию входящего режима на выход, позволяя цифровым и аналоговым пользователям совместно использовать один ретранслятор.
До сих пор, FM ретрансляторы использовались только для традиционной FM связи, а цифровые ретрансляторы только для цифровой. Однако, теперь просто заменив обычный аналоговый FM репитер на DR-1X, вы можете продолжать пользоваться обычной FM связью, а также использовать ретранслятор для более продвинутой цифровой радиосвязи System Fusion . Другие периферийные устройства, такие как дуплексер и усилитель и т.д. можно продолжать использоваться как обычно.

Более подробные характеристики оборудование можно увидеть на сайте в разделе продукция

Сигналами называют информационные коды, которые применяются людьми для того, чтобы передавать сообщения в информационной системе. Сигнал может подаваться, но его получение не обязательно. Тогда как сообщением можно считать только такой сигнал (или совокупность сигналов), который был принят и декодирован получателем (аналоговый и цифровой сигнал).

Одними из первых методов передачи информации без участия людей или других живых существ были сигнальные костры. При возникновении опасности последовательно разводились костры от одного поста к другому. Далее мы будем рассматривать способ передачи информации при помощи электромагнитных сигналов и подробно остановимся на рассмотрении темы аналоговый и цифровой сигнал .

Любой сигнал может быть представлен в виде функции, которая описывает изменения его характеристик. Такое представление удобно для изучения устройств и систем радиотехники. Помимо сигнала в радиотехнике есть еще шум, который является его альтернативой. Шум не несет полезной информации и искажает сигнал, взаимодействуя с ним.

Само понятие дает возможность отвлечься от конкретных физических величин при рассмотрении явлений, связанных с кодированием и декодированием информации. Математическая модель сигнала в исследованиях позволяет опираться на параметры функции времени.

Типы сигналов

Сигналы по физической среде носителя информации делятся на электрические, оптические, акустические и электромагнитные.

По методу задания сигнал может быть регулярным и нерегулярным. Регулярный сигнал представляется детерминированной функцией времени. Нерегулярный сигнал в радиотехнике представлен хаотической функцией времени и анализируется вероятностным подходом.

Сигналы в зависимости от функции, которая описывает их параметры могут быть аналоговыми и дискретными. Дискретный сигнал, который был подвергнут квантованию называется цифровым сигналом.

Обработка сигнала

Аналоговый и цифровой сигнал обрабатывается и направлен на то, чтобы передать и получить информацию, закодированную в сигнале. После извлечения информации ее можно применять в разных целях. В частных случаях информация подвергается форматированию.

Аналоговые сигналы подвергаются усилению, фильтрации, модуляции и демодуляции. Цифровые же помимо этого еще могут подвергаться сжатию, обнаружению и др.

Аналоговый сигнал

Наши органы чувств воспринимают всю поступающую в них информацию в аналоговом виде. К примеру, если мы видим проезжающий мимо автомобиль, мы видим его движение непрерывно. Если бы наш мозг мог получать информацию о его положении раз в 10 секунд, люди бы постоянно попадали под колеса. Но мы можем оценивать расстояние куда быстрее и это расстояние в каждый момент времени четко определено.

Абсолютно то же самое происходит и с другой информацией, мы можем оценивать громкость в любой момент, чувствовать какое давление наши пальцы оказывают на предметы и т.п. Иными словами, практически вся информация, которая может возникать в природе имеет аналоговый вид. Передавать подобную информацию проще всего аналоговыми сигналами, которые являются непрерывными и определены в любой момент времени.

Чтобы понять, как выглядит аналоговый электрический сигнал, можно представить себе график, на котором будет отображена амплитуда по вертикальной оси и время по горизонтальной оси. Если мы, к примеру, замеряем изменение температуры, то на графике появится непрерывная линия, отображающая ее значение в каждый момент времени. Чтобы передать такой сигнал с помощью электрического тока, нам надо сопоставить значение температуры со значением напряжения. Так, например, 35.342 градуса по Цельсию могут быть закодированы как напряжение 3.5342 В.

Аналоговые сигналы раньше использовались во всех видах связи. Чтобы избежать помех такой сигнал нужно усиливать. Чем выше уровень шума, то есть помех, тем сильнее надо усиливать сигнал, чтобы его можно было принять без искажения. Такой метод обработки сигнала затрачивает много энергии на выделение тепла. При этом усиленный сигнал может сам стать причиной помех для других каналов связи.

Сейчас аналоговые сигналы еще применяются в телевидении и радио, для преобразования входного сигнала в микрофонах. Но, в целом, этот тип сигнала повсеместно вытеснен или вытесняется цифровыми сигналами.

Цифровой сигнал

Цифровой сигнал представлен последовательностью цифровых значений. Чаще всего сейчас применяются двоичные цифровые сигналы, так как они используются в двоичной электронике и легче кодируются.

В отличие от предыдущего типа сигнала цифровой сигнал имеет два значения «1» и «0». Если мы вспомним наш пример с измерением температуры, то тут сигнал будет сформирован иначе. Если напряжение, которое подается аналоговым сигналом соответствует значению измеряемой температуры, то в цифровом сигнале для каждого значения температуры будет подаваться определенное количество импульсов напряжения. Сам импульс напряжения тут будет равен «1», а отсутствие напряжения – «0». Приемная аппаратура будет декодировать импульсы и восстановит исходные данные.

Представив, как будет выглядеть цифровой сигнал на графике, мы увидим, что переход от нулевого значения к максимальному производится резко. Именно эта особенность позволяет принимающей аппаратуре более четко «видеть» сигнал. Если возникают какие-либо помехи, приемнику проще декодировать сигнал, нежели чем при аналоговой передаче.

Однако цифровой сигнал с очень большим уровнем шума восстановить невозможно, тогда как из аналогового типа при большом искажении еще есть возможность «выудить» информацию. Это связано с эффектом обрыва. Суть эффекта в том, что цифровые сигналы могут передаваться на определенные расстояния, а затем просто обрываются. Этот эффект возникает повсеместно и решается простой регенерацией сигнала. Там, где сигнал обрывается, нужно вставить повторитель или уменьшить длину линии связи. Повторитель не усиливает сигнал, а распознает его изначальный вид и выдает его точную копию и может использоваться сколь угодно в цепи. Такие способы повторения сигнала активно применяются в сетевых технологиях.

Помимо всего прочего аналоговый и цифровой сигнал различается и возможность кодирования и шифрования информации. Это является одной из причин перехода мобильной связи на «цифру».

Аналоговый и цифровой сигнал и цифро-аналоговое преобразования

Следует еще немного рассказать о том, как аналоговая информация передается по цифровым каналам связи. Вновь прибегнем к примерам. Как уже говорилось звук – это аналоговый сигнал.

Что происходит в мобильных телефонах, которые передают информацию по цифровым каналам

Звук, попадая в микрофон подвергается аналого-цифровому преобразованию (АЦП). Этот процесс состоит из 3 ступеней. Берутся отдельные значения сигнала через одинаковые отрезки времени, этот процесс называется дискретизация. По теореме Котельникова о пропускной способности каналов, частота взятия этих значений должна быть вдвое выше, чем самая высокая частота сигнала. То есть, если в нашем канале стоит ограничение на частоту в 4 кГц, то частота дискретизации будет составлять 8 кГц. Далее все выбранные значения сигнала округляются или, иначе говоря, квантуются. Чем больше уровней при этом будет создано, тем выше будет точность восстановленного сигнала на приемнике. Затем все значения преобразуются в двоичный код, который передается на базовую станцию и затем доходит до другого абонента, являющегося приемником. В телефоне приемника происходит процедура цифро-аналогового преобразования (ЦАП). Это обратная процедура, цель которой на выходе получить сигнал как можно более идентичный исходному. Далее уже аналоговый сигнал выходит в виде звука из динамика телефона.

Аналоговые каналы связи

Аналоговые каналы связи являются наиболее распространенными по причине длительной истории их развития и простоты реализации. Типичным примером аналогового канала является канал тональной частоты (телефония).

Необходимость в модуляции аналоговой информации возникает, когда нужно передавать низкочастотный аналоговый сигнал через канал, находящийся в высокочастотной области спектра.

Примерами такой ситуации является передача голоса по радио и телевидению. Голос имеет спектр шириной примерно в 10кГц, а радиодиапазоны включают гораздо более высокие частоты, от 30кГц до 300МГц. Еще более высокие частоты используются в телевидении. Очевидно, что непосредственно голос через такую среду передать нельзя.

Модуляцией называется преобразование сигнала, заключающееся в изменении какого-либо его информационного параметра в соответствии с передаваемым сообщением.

Передаваемая информация заложена в управляющем (модулирующем) сигнале, а роль переносчика информации выполняет высокочастотное колебание, называемое несущим. Модуляция, таким образом, представляет собой процесс «посадки» информационного колебания на заведомо известную несущую.

Аналоговая модуляция является таким способом физического кодирования, при котором информация кодируется изменением амплитуды, частоты или фазы синусоидального сигнала несущей частоты.

Амплитудная модуляция (AM) - модуляция при которой амплитуда несущего колебания управляется информационным (модулирующим) сигналом.

Частотная модуляция (FM) - модуляция при которой частота несущего колебания управляется информационным (модулирующим) сигналом.

Фазовая модуляция (PM) - модуляция при которой фаза несущего колебания управляется информационным (модулирующим) сигналом.

Цифровые каналы связи

К цифровым каналам связи относятся каналы ISDN, T1/E1.

При передаче дискретных данных по каналам связи применяются два основных типа физического кодирования - на основе синусоидального несущего сигнала и на основе последовательности прямоугольных импульсов. Первый способ часто называется аналоговой модуляцией или манипуляцией, подчеркивая тот факт, что кодирование осуществляется за счет изменения параметров аналогового сигнала. Второй способ обычно называют цифровым кодированием. Эти способы отличаются шириной спектра результирующего сигнала и сложностью аппаратуры, необходимой для их реализации.

Аналоговая модуляция дискретных данных

Необходимость применения аналоговой модуляции к передаче дискретных данных возникает, при необходимости передачи компьютерных данных по телефонным каналам.

Устройство, которое выполняет функции модуляции несущей синусоиды на передающей стороне и демодуляции на приемной стороне, носит название модем (модулятор - демодулятор).

Основные способы аналоговой модуляции дискретных данных:

При амплитудной модуляции AM для логической единицы выбирается один уровень амплитуды синусоиды несущей частоты, а для логического нуля - другой. Этот способ редко используется в чистом виде на практике из-за низкой помехоустойчивости, но часто применяется в сочетании с другим видом модуляции - фазовой модуляцией.

При частотной модуляции FM значения 0 и 1 исходных данных передаются синусоидами с различной частотой. Этот способ модуляции не требует сложных схем в модемах и обычно применяется в низкоскоростных модемах, работающих на скоростях 300 или 1200 бит/с.
При фазовой модуляции PM значениям данных 0 и 1 соответствуют сигналы одинаковой частоты, но с различной фазой, например 0 и 180 градусов или 0,90,180 и 270 градусов.

В скоростных модемах часто используются комбинированные методы модуляции, как правило, амплитудная, в сочетании с фазовой.

Цифровое кодирование каналов связи

При цифровом кодировании дискретной информации применяют потенциальные и импульсные коды.

В потенциальных кодах для представления логических единиц и нулей используется только значение потенциала сигнала, а его перепады, формирующие законченные импульсы, во внимание не принимаются. Импульсные коды позволяют представить двоичные данные либо импульсами определенной полярности, либо частью импульса - перепадом потенциала определенного направления.

Требования к методам цифрового кодирования:

  • имел при одной и той же битовой скорости наименьшую ширину спектра результирующего сигнала;
  • обеспечивал синхронизацию между передатчиком и приемником;
  • обладал способностью распознавать ошибки;
  • обладал низкой стоимостью реализации.

Более узкий спектр цифровых сигналов позволяет на одной и той же линии (с одной и той же полосой пропускания) добиваться более высокой скорости передачи данных. Кроме того, часто к спектру сигнала предъявляется требование отсутствия постоянной составляющей, то есть наличия постоянного тока между передатчиком и приемником. В частности, применение различных трансформаторных схем гальванической развязки препятствует прохождению постоянного тока.

Синхронизация передатчика и приемника нужна для того, чтобы приемник точно знал, в какой момент времени необходимо считывать новую информацию с линии связи. Эта проблема в сетях решается сложнее, чем при обмене данными между близко расположенными устройствами. На небольших расстояниях хорошо работает схема, основанная на отдельной тактирующей линии связи.

В сетях использование этой схемы вызывает трудности из-за:

  • Неоднородности характеристик проводников в кабелях. На больших расстояниях неравномерность скорости распространения сигнала может привести к тому, что тактовый импульс придет настолько позже или раньше соответствующего сигнала данных, что бит данных будет пропущен или считан повторно.
  • Экономия проводников в дорогостоящих кабелях.

Поэтому в сетях применяются так называемые самосинхронизирующиеся коды. Любой резкий перепад сигнала - так называемый фронт - может служить хорошим указанием для синхронизации приемника с передатчиком.

Исторически первой попыткой передать цифру считают телеграф Шиллинга (1832). Постепенно изобретатель, пытаясь снизить число соединительных линий, внедрил методику кодирования печатных знаков двумя состояниями. Аналогично работает азбука Морзе (1840).

Цифровая связь – род электросвязи, использующий дискретные сигналы, как правило, двоичной системы счисления.

История кодирования информации с точки зрения связи

Считаем излишним упоминать опостылевший читателям дым костра пещерных людей. Семафор Шаппа столь же никудышный пример. И тут Википедия, сообщила: Лейбниц, основоположник двоичного счета, интересовался китайской Книгой перемен… Глубочайшие древние знания сегодня недооценивается брезгливо отбрасывающими непонятое неучами. Пойдём узкой тропой.

Древние жители Малайзии использовали комбинированную двоично-десятичную систему счисления. Ритуальные барабаны Африки формировали кодовый сигнал, служащий различным целям.

Древний Египет

Википедия не даст соврать – египтяне хорошо умели считать. Дробей было даже два вида:

  1. Египетские получили собственное название. Бытовала запись числа конечной суммой простых дробей. Математики доказали: каждое положительное рациональное число раскладывается указанным образом. Методику переняли многие древние цивилизации.
  2. Глаз Гора (напоминает Око Ра), знак даёт защиту, королевскую власть, отличное здоровье. Современные исследователи дали изображению собственные названия, отметив схожесть отдельных элементов с цифрами.

Глаза Гора

Гор считается сыном Осириса и Исиды. Традиционно наделяют головой сокола. Правый глаз древних изображений олицетворяет бога солнца Ра, левый – бога мудрости Тота. Оба являются зеркальными отражениями друг друга. Иероглифы, обозначающие глаз, имеют смысл: делатель; человек, занимающийся трудом. Различные участки изображения представляли единицу, делённую на первые 6 степеней двойки, напоминая современный бинарный код:

  1. 1/2. Правая сторона глаза.
  2. 1/4. Глазное яблоко.
  3. 1/8. Бровь.
  4. 1/16. Левая сторона.
  5. 1/32. Изгиб, завиток, имитирующий морщину ниже глаза.
  6. 1/64. След слезы.

В 2003 году Джим Риттер окончательно доказал несостоятельность теории сходства элементов глаз с иероглифами, обозначающими цифры. Однако терминология прижилась, продолжает активно применяться учёными-математиками. Египтяне применяли делители степень двоек, подсчитывая урожай, объёмы жидкостей. Первые следы употребления датируются 2400 г. до Р.Х. Порядок действий при умножении задействует алгоритм, включающий двоичное представление второго числа.

Книга перемен

Документ, датированный IX в. до Р.Х., демонстрирует систему гаданий в четверичной системе счисления. Базовая система образована:

  1. Двойственной природой сил: инь, ян.
  2. Восемью триграммами Будуа (общее количество: третья степень числа два).
  3. 64 гексаграммами Люшисыгуа (общее количество: шестая степень числа два).

Шао Йонг выстроил гексаграммы согласно порядку возрастания, создав набор чисел. Хотя никогда не пытался использовать картинки, выполняя математические вычисления.

Индия

Древний учёный Пингала (2 в. до Р.Х.) разработал ритмическую систему стихосложения, напоминающую азбуку Морзе – длинные/короткие слоги. Трактат Чандас-шастра стал обрядовой классикой, сопутствующей Ведам. Информация описана матрицей, помогающей снабдить стихотворение неповторимым ритмом. Современный двоичный аналог отсутствует.

Средневековая двоичная система

В 1605 году Фрэнсис Бэкон рассматривал систему двоичного кодирования букв, предлагая визуальную систему распознавания шифрованной информации. Попутно упоминал возможность использования:

  1. Колоколов.
  2. Огней.
  3. Факелов.
  4. Мушкетных залпов.
  5. Трубных мелодий.

Джон Непер (1617) описал систему двоичных вычислений. Томас Харриот интересовался вопросом, поленившись опубликовать результаты. Позже бумаги были найдены среди рукописей учёного. Первой тематической рукописью считают работу Хуана Карамуэля и Лобковица (1670). Раздел Ru binara arithmetica вводит понятие двоичной системы:

  • 1 = а.
  • 0 = о.

Попутно богослов упоминает возможность использования основ счисления выше десятичной, предлагая заменять недостающие цифры буквами. 32 = аооо. Поныне используется современными вычислительными системами. Учёный пытался показать: двоичное счисление подсказано природой. Лобковиц опирался на музыкальный строй инструментов. Вплетая витиеватые представления философии, указал небесную подоплёку применения троичной системы. Четыре стороны света увязал на четверичную.

Похожими тропами двигались мысли Харриота, чьи работы составляли тайну для современников.

Лейбниц

Лейбниц заинтересовался проблемой в 1979 году. Первому знакомству с китайским раритетом обязан члену миссионерской общины Иоакиму Буве, посещавшему (1685) страну шелка лично. Гексаграммы подтвердили универсальность собственных христианских мировоззрений Лейбница. Проиллюстрируем не очевидный ход мысли учёного:

  1. Христос создан из ничего (Ex nihilo) велением Бога. Противопоставляясь другим людям, созданным из материи. «Нелегко донести язычникам концепцию творения из ничего посредством силы Бога. Теперь каждый может показаться замечательную систему счисления, где мир представлен число 1, ничто – числом 0.» Цитата письма герцогу Брауншвейгу с приложенными гексаграммами.
  2. Связка Бытие/Ничто формирует дуалистическую систему.
  3. Двоичный счёт является даром небес.

Двадцать пять лет спустя вышел очерк Объяснение двоичной арифметики, использующей числа 0 и 1, дополненное объяснением полезности и связи с китайскими фигурами Фу Си. Семантическое представление значений идентично общепринятому современному. Учёный потрудился выстроить гексаграммы (см. выше), получив мощное средство производства вычислений.

Двоичная арифметика

Джордж Буль (1854) создал знаменитую логику, получившую волей сообщества математиков уникальное название. Логика стала основой конструирования современных цифровых приборов. Клод Шеннон (1937, Массачусетский технологический институт) сформулировал ключевые тезисы реализации электронных вычислителей, использующих переключатели, реле. К ноябрю Джордж Штибиц реализовал концепцию, построив Модель К. Литера обозначала кухню, где трудился изобретатель.

США

Первый вычислитель умел складывать цифры. Лаборатории Белла организовали исследовательскую программу, поставив главным Штибица. Оконченная 8 января 1940 года машина использовала комплексные числа. Демонстрируя детище конференции Американского математического общества на базе колледжа Дартмуна, изобретатель подавал команды посредством телефонной линии, используя телетайп. Продемонстрировав прототип современной клавиатуры – устройства ввода. Демонстрацию посетили лично:

  1. Джон фон Ньюманн.
  2. Норберт Винер.
  3. Джон Моучли.

Германия

Параллельно компьютер Z1 (альтернативное имя V1 – экспериментальная модель) построил Конрад Цузе. Двоичный вычислитель считывал простейшие инструкции с перфорированной плёнки. Изделие 1935-1936 г.г. считают первым программируемым устройством современной истории человечества. Разработка полностью оплачена частными фондами. Компьютер весом 1 тонну полностью уничтожен бомбардировкой Берлина 1943 года войсками союзников. Рядом сгорели чертежи…

Это интересно! Оригинальное имя V1 повторяло название знаменитых Фау-1 (самолётов-снарядов). Поэтому современной литературой употребляется Z1.

  1. Контрольный блок – аналог процессора.
  2. Математическую логику с плавающей запятой.
  3. Память (читаемая/исполняемая) объёмом 64 слова.
  4. Устройства ввода-вывода, включая считыватель 35 мм перфоленты.

Контрольный блок давал возможность наблюдать последовательность исполняемых операций. Вычислительный блок оперировал 22-битными числами с плавающей запятой. Логические операции расширяли функциональность. Первоначальный набор содержал 9 инструкций, занимающих 1-20 «процессорных» циклов.

Входные/выходные данные десятичные.

История развития цифровой связи

Исторически первой стала амплитудная модуляция сигнала, внедрённая Поповым за неимением выбора. Частотная запатентована 26 декабря 1933 года Эдвином Армстронгом. Отличается более широкой полосой частот, занимаемых передаваемым сигналом. Цифровой сигнал использует обе методики. Отличие описывается способом представления информации:

  1. Величина физического мира аналогового характера становится цифрой двоичной системы счисления.
  2. Символы 0, 1 кодируются установленным образом.
  3. Приёмная сторона расшифровывает послание.

Исторически первым устройством, применяющим кодирование называют телеграф Шиллинга (1832) – реализацию идеи Андрэ-Мари Ампера. Некорректно называть связь цифровой, потому что буквы также являются объектами дискретными. Отсутствует факт преобразования величин.

Мультиплексирование

Необходимость нарезать сигнал вызвана желанием телеграфистов использовать одну линию передачи. Первый трансатлантический кабель стоил недёшево. Немедля начали канал сдваивать, учетверять. Наука дискретизации шагает параллельно первым потугам моряков утопить кабель. Американский изобретатель Мосес Фармер предложил (1853) мультиплексирование с временным делением абонентов. Несколько передатчиков смогли использовать одну линию.

Двадцать лет спустя Эмиль Бодо построил машину автоматического мультиплексирования телеграфов Хагис. Долгое время положение дел устраивало общественность. Отсутствие элементной базы стопорило работы. В 1903 году Майнер создал электромеханический коммутатор временного мультиплексирования телеграфов. Последовательно технологию транспонировали на телефонные линии. Частота нарезки составляла 3,5-4 Гц, оставляя желать лучшего.

Кабельная система передачи изображений Бартлейна (1920) посылала оцифрованные рисунки принимающему факсу на другой стороне Атлантического океана. Применение бинарной арифметики снижало время передачи, достигая показателя 3 часа. Изначально производилась кодировка пятью оттенками серого. Постепенно число повышалось, достигнув (1929) пятнадцати. Имя технологии является производным двух создателей концепции:

  1. Гарри Бартоломью.
  2. Майнхард МкФарлейн.

Идею перенял Пол Рэйни, запатентовавший факсимильную машину, производящую оцифровку изображения 5-битным кодом посредством опто-механического конвертера. Попытка промышленного выпуска провалилась. Британского инженера Алека Ривса считают основоположником оцифровка голосовых сообщений. Теоретически рассмотрев вопрос, изобретатель подал заявку французскому бюро (по месту основной работы). Война подзатянула решение комиссии. Положительный ответ принёс 1943 год.

Зелёный шершень

Историки затрудняются указать первый факт установления цифровой связи, запутанный секретами Второй мировой войны. Шифровальное оборудование SIGSLAY радовало союзников непонятными врагам передачами. Википедия однозначно называет альянс пионерами. Техника использовала кодово-импульсную модуляцию. Находятся энтузиасты, приписывающие роль первопроходца Попову. Полагаем, несостоятельность трактовки очевидна.

Это интересно! Прототип первого цифрового связного оборудования назвали программой Зелёный шершень. Передатчик похоже гудел, кодируя информацию. Зелёный шершень помог провести 3000 конференций.

Немецкие шпионы прослушивали каналы связных скрамблеров А-3, построенных Вестерн Электрик. Иногда глушили трафик. Враждующие стороны постоянно взламывали взаимную защиту. Злоумышленникам помогал анализатор спектра. Сигсалли маскировал посылку, спрятанную предварительно вокодером, псевдошумовым сигналом. Разработчики заложили частоту дискретизации 25 Гц. Изобретатели продемонстрировали ряд новых технологий, реализуя схему:

  1. Выборку десяти каналов линии диапазона 250..2950 Гц шифрации.
  2. Оцифровку согласно правилу наличия, отсутствие фонации.
  3. Наличие характеризовалось высотой тона, скорость изменения ниже 25 Гц.

Выборки нарезали частотой 50 Гц, амплитуду конвертировали шестью уровнями (числом 0..5). Шкала дискретизации нелинейная с большими пролётами на сильных сигналах. Разработчики использовали данные физиологов, констатирующих: оттенки голоса закладываются не всеми колебаниями голосовых связок одинаково. Звук с фонацией кодировали парой 6-уровневых чисел, добиваясь получения 36 уровней.

Криптографический ключ образован серией случайных значений 6-уровневых чисел. Код вычитался из выборки голосовых отсчётов по модулю 6, скрывая содержимое. Несущая подвергалась частотной манипуляции (резкое изменение значения несущей). Приёмник принимал набор значений, образовывал выборку сообразно принятой системе кодирования. Затем сигнал расшифровывали, производя сложение по модулю 6. Вокодер довершал цепочку преобразований.

  1. Белым шумом заполнялись промежутки, лишённые фонации.
  2. Генератор формировал сетку гармоник, частота которых контролировалась высотой тона (см. выше).
  3. Отдельный переключал тонации контролировал тип звучания.
  4. Дело довершал регулируемый усилитель.

Шумовые комбинации шифрования ключа изначально записали с большого ртутного выпрямителя на фонограф. Информацию разослали пользователям системы. Терминал, сформированный 40 блоками, весил 50 тонн, потребляя 30 кВт энергии. Комнату приходилось охлаждать воздухом. Первый комплект занял помещение здания Пентагона. Президент Франклин Рузвельт круглосуточно имел возможность общаться, выслушивая планы премьер-министра Уинстона Черчилля, имевшего собственный экземпляр под Оксфорд Стрит. 15 июля 1943 года состоялась первая пресс-конференция союзников. Стороны установили необходимое количество наборов, включая один, занявший борт флагмана Генерал Дуглас МакАртур.

Достижения

  1. Первая секретная радиосвязь.
  2. Первая дискретизированная передача данных.
  3. Внедрение концепции кодово-импульсного радиоканала.
  4. Использование компадирования.
  5. Первая радиопередача многоуровневой частотной манипуляции.
  6. Первая технология компрессии спектра речи.
  7. Внедрение методики частотного деления каналов при помощи манипуляции.

Развитие концепции цифровой связи

Канадская военно-морская система DATAR (1949) стала транслировать информацию. Формирование считают первым примером военной информационной системы, реализуя концепцию единого командного пункта. Канада хорошо помнила 1943 год, когда получила возможность координировать действия морских сил союзников. Командование задумало упростить процесс. Круглый планшет, напоминающий экран радиолокационной станции, показывал положение участников баталии. Проект затрагивал морской флот, попутно специалисты отметили возможный охват всех родов войск.

Демонстрация 1953 года провалилась, заставив ВВС США заняться разработкой SAGE. Центральная система управляла действиями NORAD, отражая возможные атаки воздушного флота противника. Обстановка, сдобренная изрядной долей дисплеев, компьютеров, стала неотъемлемой частью холодной войны. Основу производственной мощности составил супервычислитель AN/FSQ-7, снабдивший процессорным временем командные центры, занимавший 22000 квадратных футов пола.

Стоимость, исчисляемая миллиардами долларов, перекрыла затраты Манхэттанского проекта. Тест Небесного щита показал перехват 25% бомбардировщиков. Сегодня управляющая роль получена микрокомпьютерам, дублирующим функции машинных залов. Ограниченность технологии объяснялась необходимостью использования вакуумных электрических приборов. Военные отдали часть технологий промышленности. 24-канальные машины 1953 года были далеки океану, военной авиации. Истинное призвание техники RCA – посылать звуковые сообщения на Брод Стрит (Нью-Йорк), обеспечивать функционирование линий Роки Пойнт – Лонг Айленд.

Цифровая революция

Подложка давно была готова. Основы, кропотливо развиваемые учёными, заложил Чарльз Бэббидж. Технологии связи развивали телеграфисты. США выделили для цифровых проектов бюджет. Статья Клода Шеннона Математическая теории связи (1948) стала путеводной звездой отрасли. Промышленность ринулась оцифровывать аналоговые сигналы. Копии стали идентичны оригиналом, перестали стариться. Цифровая информация без потерь преодолевала кабель, эфир.

1947 год принёс миру полупроводниковый триод. Военные мигом оценили предоставляемые возможности. Вероятно засекреченные ранее сведения специально обнародовали, оценив потенциал гражданской промышленности США. Параллельно Великий рывок совершила Япония, порастеряв остатки феодального строя. 50-60-е годы основными потребителями оставались военные, правительство. В 1969 году Intel выпустили микропроцессор 4004, подготовивший базис будущей революции. Одновременно США заложили будущую основу общемировой сети интернет, инициировав проект ARPANET.

Хронология развития кодово-импульсной модуляции

Важно! Зал славы национальных изобретателей США наградил Бернарда Оливера, Клода Шеннона за создание кодово-импульсной модуляции (патент США 2.801.281, 1957 год).

Первая система вещательных приёмопередатчиков (1961) несла 24 телефонных канала кодово-импульсной модуляции (КИМ), частотой выборки 8 кГц, кодированных 8-битными числами. Качество связи соответствовало используемому ранее частотному мультиплексированию. Указанное помогло оцифровать:

  1. Связь. Поколение 2G (1992) сотовых сетей стало цифровым.
  2. Телевещание (начало 90-х, XX века). Женевское соглашение, принятое 17 июня 2015 года, установила сроки устранения странами последних признаков аналогового вещания. Первыми (2006) ушли Нидерланды, Люксембург. Россия планирует окончить процесс в 2019.
  3. Радиовещание (конец 80-х, XX века). Норвежская корпорация NRK 1 июня 1995 года первой начала коммерческую трансляцию. К 2017 году 38 стран запустили сервис, включая Россию.

Изобретённая Алеком Ривсом (1937) импульсно-кодовая модуляция постепенно достигла областей звукозаписи, позже захватив коммерческое вещание. Пионерами стали продукты японских брендов (1971) NHK, Ниппон Колумбия. Параллельно опыты вели ВВС, создавшие цифровой двухканальный рекордер. Годом позже британцы провели пробную цифровую трансляцию. Развитие цифровой записи предшествовало появлению вещания.

  • Четвёртое поколение коммутаторов 4ESS внедрено в систему телефонных линий США (1976).
  • Линейная кодово-импульсная модуляция (1982) включена красной книгой стандартов записи компакт-дисков.
  • AES3, основа будущего S/DIF, вводится в обиход (1985).
  • Формат файлов.WAV становится стандартом персональных компьютеров (1991).
  • Мировая запись носителей переходит на цифру: DVD (1995), Blu-ray (2005).
  • Разработка цифровых протоколов передачи (2001) любительских раций (D-STAR, компании ICOM).
  • HDMI поддерживает кодово-импульсную модуляцию (2002).
  • Контейнер RF64 включает КИМ (2007).

Резюме развития технологии

Виды радиолюбительской связи на КВ принёс миллениум. Упоминая наработки Второй мировой войны, попутно обсуждали громадные размеры оборудования (машинные залы). Минимизация шла полным ходом, однако новинки оставались засекреченными. Исключая области записи, компьютерных сетей. Развал СССР явил миру чудеса цифровой техники: вещание, персональные вычислительные машины, связь. Поэтапно мир выбрасывает вон аналоговые технологии, модернизируя оборудование.

Структурная схема процесса позволяет игнорировать старение, погодные условия, помехи. Модем шутя выполняет работу машинного зала времён Второй мировой войны. Радиолюбителям стали выделять технику, о которой мечтали вьетнамские войска. Процесс вскоре позволит домоседам проектировать системы, насиживая уютное кресло. Возблагодарим интернет, подаривший людям возможности, доселе не известные планете.