Министерство образования РФ

Уральский Государственный Технический Университет

Кафедра Автоматика и управление в технических системах

РАСЧЕТ ПРЕДВАРИТЕЛЬНОГО УСИЛИТЕЛЯ

НА ТРАНЗИСТОРЕ КТ3107И

Курсовая работа по

Электронике

Студент гр. Р-291а А.С. Клыков

Преподаватель

доцент, к.т.н. В. И. Паутов

Екатеринбург 2000

1. Предварительные данные для расчета усилителя 3

2. Выбор транзистора4

3. Расчет режима транзистора по постоянному току 4

4. Выбор напряжения источника питания 5

5. Расчет элементов, обеспечивающих рабочий режим тр-ра5

6. Расчет емкостей С ф, С 1 , С 2 , С э 7

7. Результаты расчета8

8. АЧХ и ФЧХ усилителя 9

9. Список литературы 10

1. Предварительные данные для расчета усилителя

U Н = 0.2 В

R Н = 0.3 кОм

R С = 0.5 кОм

t max = 70 0 C

f н = 50 Гц

f в = 25 Гц


2. Выбор транзистора.

Для выбранного транзистора добротность D т:

где r¢ б – объемное сопротивление базы, равное 150 Ом C к – емкость коллекторного перехода

По расчетным данным и из условий: Р к max >Р к, B min ³ B необх, ¦ в ³¦ в,необх выбираем транзистор КТ3107И

3. Расчет режима транзистора по постоянному току.


Ток коллектора I к определяем по формуле:
где R вх = В * r э = 1к9 - входное сопротивление каскада Е с – источник сигнала
Напряжение на оллекторе-эмиттере U кэ:Рабочая точка транзистора =1.5 В

I 0 к = 1.82 В

4. Выбор напряжения источника питания.


Найдем R э по формуле:

где S – температурный коэффициент

R б = (5¸10) R вх = 5*1900 = 9500 Ом – общее сопротивление базы


Найдем U б:
Определим R ф:

По ГОСТу выбираем:

R 1 = 6к0 R 2 = 16к0 R э = 3к2 R ф = к45

Проверим выполнение неравенства:

I 0 к * R э + U 0 кэ + I 0 к * R к + (I 0 к + I д ) * R ф ³ Е к

5.824 + 1.5 + 2.5 + 1.179 ³ 5

11 ³ 5 – неравенство выполняется


Определим для повторителя R э2:

U Б2 = U К1 = I 0 э *R э + U 0 Кэ = 1.82мА * 3.2кОм + 1.5В = 7.32 В

U Бэ2 = r¢ б * I 0 э = 150 * 1.82мА = 0.27 В


Найдем R вх2 и R вых2:
Коэффициент усиления первого каскада:
6. Расчет емкостей С ф, С 1 , С 2 , С э.

где К СГ = 40 – коэффициент сглаживания

f П = 100 Гц – основная частота пульсации ист.питания


8. Амплитудно-частотная и фазо-частотная характеристики.
10 20 30 40 60 100 160 320 640 1280 2560 5120 10240 20480 40960 81920 163840
1 1.30103 1.47712125 1.60205999 1.77815125 2 2.20411998 2.50514998 2.80617997 3.10720997 3.40823997 3.70926996 4.01029996 4.31132995 4.61235995 4.91338994 5.21441994
62.8 125.6 188.4 251.2 376.8 628 1004.8 2009.6 4019.2 8038.4 16076.8 32153.6 64307.2 128614.4 257228.8 514457.6 1028915.2
0.2 0.4 0.6 0.8 1.2 2 3.2 6.4 12.8 25.6 51.2 102.4 204.8 409.6 819.2 1638.4 3276.8
5 2.5 1.66666667 1.25 0.83333333 0.5 0.3125 0.15625 0.078125 0.0390625 0.01953125 0.00976563 0.00488281 0.00244141 0.0012207 0.00061035 0.00030518
0.4 0.8 1.2 1.6 2.4 4 6.4 12.8 25.6 51.2 102.4 204.8 409.6 819.2 1638.4 3276.8 6553.6
4.6 1.7 0.46666667 -0.35 -1.56666667 -3.5 -6.0875 -12.64375 -25.521875 -51.1609375 -102.380469 -204.790234 -409.595117 -819.197559 -1638.39878 -3276.79939 -6553.59969
25 6.25 2.77777778 1.5625 0.69444444 0.25 0.09765625 0.02441406 0.00610352 0.00152588 0.00038147 9.5367E-05 2.3842E-05 5.9605E-06 1.4901E-06 3.7253E-07 9.3132E-08
0.16 0.64 1.44 2.56 5.76 16 40.96 163.84 655.36 2621.44 10485.76 41943.04 167772.16 671088.64 2684354.56 10737418.2 42949673
0.21242964 0.50702013 0.90618314 0.94385836 0.53803545 0.27472113 0.16209849 0.07884425 0.03915203 0.01954243 0.00976702 0.00488299 0.00244143 0.00122071 0.00061035 0.00030518 0.00015259
1.35673564 1.03907226 0.43662716 -0.33667482 -1.00269159 -1.29249667 -1.40797942 -1.49187016 -1.53163429 -1.55125265 -1.56102915 -1.56591332 -1.5683549 -1.56957562 -1.57018597 -1.57049115 -1.57064374


Размещено на http://www.сайт

Размещено на http://www.сайт

Министерство образования и науки Республики Казахстан

ВОСТОЧНО-КАЗАХСТАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Д.Серикбаева

Кафедра «Приборостроение и автоматизация технологических процессов»

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовому проекту

по дисциплине «Электроника»

Тема: «Расчет транзисторных усилителей»

Выполнил:

студент группы 12-РТ-1

Мусин Д.К.

Проверил

доцент кафедры ПиАТП

Корнев В.А.

Усть-Каменогорск 2013

Введение

1 Аналитический обзор

1.1 Классификация усилителей

1.2 Общие принципы проектирования усилителей на биполярных транзисторах

1.5 Обратная связь

2 Расчет транзисторного усилителя

2.1 Оценка предельных параметров и выбор транзистор

2.2 Расчет первого каскада

2.2.1 Расчет по постоянному току

2.2.2 Динамический расчет усилитель транзистор биполярный

2.3 Расчет второго каскада

2.3.2 Динамический расчет

2.4 Расчет разделительных конденсаторов и емкости шунтирующего конденсатора в цепи эмиттера

Заключение

Список литературы

Приложение А

Приложение Б

Приложение В

Приложение Г

Приложение Д

Приложение Е

Приложение Ж

ВВЕДЕНИЕ

Одна из основных функций, реализуемых аналоговыми устройствами, это усиление. В качестве активных элементов чаще всего применяются транзисторы.

В настоящее время знание принципов использования электронных приборов для усиления, генерирования, преобразования электрических сигналов и владение методами анализа и расчета электронных цепей приобретает особую актуальность с развитием микроэлектроники.

В технике повсеместно используются разнообразные усилительные устройства. Характерной особенностью современных электронных усилителей является исключительное многообразие схем, по которым они могут быть построены.

Электронные усилители являются одними из наиболее важных и широко используемых устройств в системах передачи и обработки различной информации, представленной с помощью электрических сигналов. Высокая чувствительность, быстродействие, компактность, экономичность электронных усилителей обусловили их широкое применение в измерительной технике, электро- и радиосвязи, автоматике, вычислительной технике и т.п

В зависимости от того, какой параметр входного сигнала требуется увеличить с помощью усилительного каскада, различают усилительные каскады напряжения, тока и мощности.

Усилители мощности, иногда называемые оконечными усилителями, предназначены для увеличения мощности звуковых сигналов до такого уровня, что бы они могли возбудить электроакустические преобразователей, головные телефоны и другие. Принцип работы усилителей мощности состоит в том, что преобразует подводимую к ним от источника питании мощности с постоянного тока в переменный ток, причем форма сигнала на выходе усилителя полностью повторяет сигнал на входе. Усилители мощности должны обладать небольшими искажениями. Качество звучания любого звуковоспроизводящего комплекса во многим зависит от параметров усилителя мощности звуковой частоты. К настоящему времени опубликованы множество вариантов транзисторных усилителя мощности звуковой частоты, отличающего порой очень качествами показателями, однако, поиск новых схемных решении, позволяющих в еще большой мере приблизить звучания звукопроводящих устройств к естественному, продолжается.

Основная цель работы - получение необходимых навыков практического расчета транзисторных усилителей, обобществление полученных теоретических навыков

1. АНАЛИТИЧЕСКИЙ ОБЗОР

1.1 Классификация усилителей

УУ называется устройство, предназначенное для повышения (усиления) мощности входного сигнала. Усиление происходит с помощью активных элементов за счет потребления мощности от источника питания. В УУ входной сигнал лишь управляет передачей энергии источника питания в нагрузку.

В зависимости от назначения усилители подразделяются на:

усилители постоянного тока (ЖЕ),

усилители низкой частоты (УНЧ),

усилители высокой частоты (УВЧ),

избирательные усилители,

широкополосные (видеоусилители),

импульсные,

операционные и т.д.

Операционные усилители относятся к классу многофункциональных, или универсальных, так как с их помощью можно реализовать практически любой вид усиления электрического сигнала.

В настоящее время основным элементом электронного усилительного устройства является транзистор.

Общие принципы проектирования усилителей на биполярных транзисторах

Транзистором называют полупроводниковый прибор, в котором изменение входного электрического сигнала приводит к изменению сопротивления выходной цепи транзистора. Это свойство транзистора может быть использовано для различных преобразований электрических сигналов (усиление, генерирование, преобразователей формы и т.д.) в электронных стабилизаторах, переключателях и т.п. Существует большое разнообразие транзисторов, отличающихся принципом действия, назначением, мощностью, частотными свойствами и другими признаками.

В данном курсовом проекте используется биполярный транзистор типа n-р-п, и имеющий два р-п- перехода. На рисунке 1а показано условное графическое и буквенное обозначение таких транзисторов на электрических схемах. На рисунке 1б изображена схема подключения внешних элементов, генератора усиливаемого входного напряжения (UВХ) и источника питания (+Un) к выводам транзистора.

Так как эмиттер является общим, то такое включение транзистора получило название схемы включения с общим эмиттером (ОЭ). Это основная схема включения биполярных транзисторов, так как в ней наилучшим образом используются усилительные свойства транзистора. Существуют также схемы включения с общей базой (ОБ) и общим коллектором (ОК), которые используются реже.

Рисунок 1 - Условное графическое и буквенное обозначение биполярных транзисторов типа n-р-n на электрических схемах

Цепь "коллектор-эмиттер" транзистора является силовой цепью, в которую включается резистор коллекторной нагрузки Р, а цепь "база-эмиттер" называют управляющей цепью, к которой подводится усиливаемый электрический сигнал.

По 2-му закону Кирхгофа для транзистора (смотреть рисунок 16) можно записать

т.е. ток коллектора Iк меньше тока эмиттера Iэ на величину тока базы Iб.

В схеме включения транзистора с ОЭ входной величиной является ток базы, а выходной - ток коллектора.

Рисунок 2 - а) входные характеристики б) выходные или характеристики

Основными статическими вольтамперными характеристиками (BАХ) транзистора в схеме с ОЭ являются:

а) входные характеристики (рисунок 2, а)

б) выходные или коллекторные характеристики (рисунок 2, б)

Входные характеристики при UKЭ>0 постепенно сгущаются, практически перестают зависеть от этой величины, поэтому в справочниках приводятся две кривые - для UKЭ = 0 В и UКЭ=3 В, либо UKЭ = 5 В.

Выходные характеристики приблизительно равноудалены друг от друга при одинаковых приращениях тока базы, начиная с IБ=0. Однако в дальнейшем они начинают сгущаться по мере приближения к току базы насыщения IБнас. При Iв= IБнас транзистор насыщается, т.е. полностью открывается, и он перестает быть управляемым током базы, т.е. переходит в ключевой режим работы.

Рабочей областью выходных характеристик в режиме усиления является область, ограниченная предельно допустимыми значениями и областями насыщения и отсечки (смотреть линии со штриховкой на рисунке 2, б). В этой области характеристики можно считать практически линейными, а транзистор - линейным элементом.

На входные и выходные характеристики транзистора (смотреть рисунок 2, а и б) существенно влияет температура нагрева транзистора. С ростом температуры они эквивалентно поднимаются вверх (смотреть рисунок 2, б).

В справочниках приводятся электрические параметры (оптимальные или номинальные для каждого типа транзистора), а также предельные эксплуатационные данные. К первым, в качестве основных относятся: статический коэффициент передачи тока (или) в схеме с ОЭ; граничное напряжение UKЭ; обратный ток коллектора IК0; граничная частота fгр коэффициента, т.е. та частота усиливаемого сигнала, при которой коэффициент (или) уменьшается в раза и др.

Усилительный каскад на транзисторе с ОЭ (рисунок 3). Каскад предназначен для усиления только переменных сигналов. К входной цепи усилительного каскада относятся все элементы, подсоединяемые между базой и эмиттером транзистора, а также источник входного сигнала (UBХ).

Рисунок 3 - Усилительный каскад на транзисторе с ОЭ

Выходная цепь каскада включает источник питания Un, управляемый элемент-транзистор VT и резистор R. Эти элементы образуют главную цепь усилительного каскада, в которой за счет протекающего коллекторного тока iK , управляемого током базы iб, создается усиленное переменное напряжение на выходе схемы Uвых. Остальные элементы играют вспомогательную роль.

Конденсаторы CI и С2 являются разделительными: CI исключает шунтирование входной цепи каскада цепью источника входного сигнала по постоянному току, что позволяет, во-первых, исключить протекание постоянного тока через источник входного сигнала по цепи + Un-- Rl- внутреннее сопротивление источника ив (на рис.4 не показано) и, во-вторых, обеспечить независимость напряжения на базе U~Bn в режиме покоя, т.е. при отсутствии входного сигнала и=0, от внутреннего сопротивления источника входного сигнала. Назначение конденсатора С2 - пропускать в цепь нагрузки только переменную составляющую напряжения.

Резисторы Rl и R2 используются для задания режима покоя каскада. Поскольку биполярный транзистор управляется током, ввиду малости входного сопротивления транзистора, включенного по схеме с ОЭ, ток покоя в коллекторной цепи Г (смотреть рисунок 2, а) задается соответствующей величиной тока базы сигнала, вносимых транзистором в режиме усиления. Это требование выполняется, если точка покоя П (смотреть рисунок 2, а и б) находится в середине линейного участка входных и выходных характеристик транзистора. Чтобы положение точки покоя оставалось практически неизменным при старении транзистора или воздействии внешних возмущающих факторов, ток I делителя R1-R2 должен быть в 8…10 раз больше необходимого тока покоя базы Iбп.

Резистор Rэ является элементом отрицательной обратной связи, предназначенным для стабилизации режима покоя каскада при изменениях температуры. Конденсатор Сэ шунтирует резистор Р по переменному току, исключая тем самым проявление отрицательной обратной связи в каскаде по переменным составляющим.

Отсутствие Сэ приведет к уменьшению коэффициента усиления каскада .

Рассмотрим работу каскада в режиме усиления, когда на вход каскада подается изменяющееся входное напряжение.

При этом начинают изменяться напряжение Uбэ и ток iб в некоторых пределах, определяемых амплитудой Uвхm и видом входной характеристики транзистора. Причем эти изменения будут происходить относительно точки покоя П (смотреть рисунок 2, а и б). В соответствии с выходными характеристиками транзистора будет изменяться и ток коллектора г, мгновенные значения которого определяются напряжениями. Для дальнейшего анализа режима работы каскада необходимо использовать графоаналитический метод расчета нелинейных электрических цепей, так как транзистор в общем случае является нелинейным элементом.

Составляем уравнение по 2-му закону Кирхгофа для режима покоя, т.е. для постоянных составляющих токов и напряжений:покоя rgn (смотреть рисунок 2, а), протекающего от источника питания Un через резистор R1. Совместно с R2 резистор R1 образует делитель напряжения питания U , часть которого, выделяемая на резисторе R2 , равна значению Uбп (смотреть рисунок 2, а). Выбор значения и определяется требованием минимальных искажений формы входного

Величина незначительна, поэтому ею для упрощения анализа можно пренебречь, и тогда получаем уравнение

Выражение (5) является уравнением прямой линии в координатах Iк и Uкэ, т.е. на выходных характеристиках транзистора. Линия, построенная по этому уравнению в координатах IK и Uкэ, называется линией нагрузки каскада по постоянному току (смотреть прямую линию на рисунке 2, б). Точка пересечения этой линии с характеристикой, соответствующей I6п, т.е. точка П, определяет режим работы каскада по постоянному току.

В режиме усиления рабочая точка перемещается вдоль линии нагрузки относительно точки П, определяя тем самым переменные составляющие тока коллектора iк и напряжения UКЭ. Вследствие наличия разделительного конденсатора С2 на выходных зажимах каскада выделяется только переменная составляющая напряжения UКЭ, которая и является выходным напряжением каскада. Графический анализ показывает, что выходное напряжение Uвых и входное Uвх находятся в противофазе, т.е. одиночный усилительный каскад на транзисторе, включенный по схеме с ОЭ, сдвигает фазу выходного напряжения по отношению к входному на 180°. Это одно из основных свойств такого каскада.

Основным показателем любого усилителя является его коэффициент усиления - это величина, равная отношению выходного сигнала к входному.

Коэффициент усиления тока базы h21э, транзистора для схемы включения с ОЭ в статическом режиме является:

h21э=в = Iк / Iб, при Uкэ= const (6)

1.3 Амплитудная и амплитудно-частотная характеристики

Основными характеристиками усилительного каскада являются амплитудная и амплитудно-частотная (АЧХ). Амплитудная характеристика определяет зависимость амплитуды или действующего значения при синусоидальном входном сигнале выходного напряжения от амплитуды или действующего значения входного напряжения при постоянной частоте входного сигнала. Примерный вид этой характеристики показан на рис.5. Линейная зависимость между Uвых и Uвх (участок 1-2) сохраняется до тех пор, пока смещение рабочей точки на входной характеристике транзистора относительно точка покоя П осуществляется по ее линейному участку (в окрестности точки П на рисунке 2, б). При Uвх>Uвх2 линейность амплитудной характеристики нарушается из-за нелинейности вольтамперных характеристик транзистора.

Рисунок 4 - Нелинейности вольтамперных характеристик транзистора

Это приводит к появлению искажений формы выходного сигнала относительно формы входного, т.е. так называемых, нелинейных искажений. Нелинейные искажения могут возникнуть при любой форме входного сигнала. Они зависят от амплитуды входного сигнала, положения точки покоя на входных и выходных характеристиках транзистора, а также от вида этих характеристик.

Амплитудно-частотная характеристика (АЧХ) усилителя представляет собой зависимость модуля коэффициента усиления К от частоты усиливаемого сигнала при постоянстве значения входного сигнала. Общий вид ее для усилителя с разделительными конденсаторами, т.е. с конденсаторной связью, показан на рисунке 5.

Рисунок 5 - Общий вид АЧХ для усилителя с разделительными конденсаторами

Нелинейность AЧX обусловлена наличием в схеме усилителя элементов (в частности, конденсаторов и транзистора), параметры которых зависят от частоты. АЧХ позволяет судить о частотных искажениях, называемых линейными. Такие искажения возникают, если входной сигнал имеет сложную форму и его можно представать как сумму гармонических составляющих с различными частотами и амплитудами, которые усиливаются неодинаково, т.е. с различными коэффициентами усиления. Анализируя рисунок 6, мы видим, что имеется диапазон средних частот с постоянным коэффициентом КV0.

Для усилителей низкой частоты, к которым относится исследуемый нами усилительный каскад, диапазон средних частот находится ориентировочно в пределах 500...1000 Гц. В диапазонах низких и высоких частот коэффициент усиления уменьшается (происходят уменьшения коэффициента усиления в области низких и высоких частот, т.е. так называемые "завалы" АЧХ).

Диапазон частот усилителя, в пределах которого усилитель обеспечивает заданное значение коэффициента усиления, называют полосой пропускания, которая определяет нижнюю fH и верхнюю fa граничные частоты усиления при заданном уровне частотных (линейных) искажений. Как правило, значение коэффициента усиления на граничных частотах полосы пропускания составляет KVo /v2. "Завал" АЧХ в диапазоне низких частот (НЧ) обусловлен влиянием разделительных конденсаторов CI, C2 и конденсатора Сэ. Обычно емкости этих конденсаторов выбираются так, чтобы их сопротивление хС=1/щС в диапазоне частот полосы пропускания было пренебрежимо мало и падением напряжения на них можно было пренебречь. С уменьшением частоты усиливаемого сигнала реактивные сопротивления хс возрастают, что приводит к увеличению падения напряжения на них, и, как следствие, потери части входного сигнала на разделительных конденсаторах C1 и С2. Шунтирующее действие конденсатора Сэ при этом также ослабляется, что приводит к возрастанию влияния отрицательной обратной свя­зи по переменному току и снижению коэффициента усиления каскада.

"Завал" АЧХ на высоких частотах обусловлен зависимостью коэффициента усиления транзистора (5 от частоты, наличием межэлектродных емкостей транзистора (особенно емкостью между базой и коллектором), влияние которых заключается в шунтировании соответствующих р-п- переходов тем большем, чем выше частота усиливаемого сигнала.

1.4 Типы связи между отдельными усилительными каскадами

Можно выделить следующие типы связи между отдельными усилительными каскадами: гальваническую (непосредственную); емкостную (с помощью RC0 цепочек); трансформаторную; с помощью частотно-зависимых цепей; оптронную.

Для сравнительно низкочастотных усилителей чаще используют первый и второй тип связи. Третий применяют реже из-за больших габаритов трансформаторов, невозможности их микроминиатюризации, высокой стоимости, сложности изготовление, повышенных нелинейных искажений. Четвертый тип используют при создании избирательных усилителей, а пятый применяется сравнительно редко, только в специальных случаях, когда при низкой рабочей частоте требуется хорошая гальваническая развязка между каскадами.

1.5 Обратная связь

На практике ни один усилитель не используется без обратной связи (ОС). Обратной связью называют передачу мощности электрического сигнала из выходной цепи во входную.

На рисунке 6 пока структурная схема усилителя с ОС, где электрический сигнал с выхода усилителя с коэффициентом усиления К через звено ОС с коэффициентом передачи г поступает обратно на вход усилителя. В состав звена ОС могут входить линейные, нелинейные, частотно-зависимые и другие элементы или даже целые устройства.

Рисунок 6 - Структурная схема усилителя с обратной связью

Существует целый ряд квалификационных признаков ОС.

Если электрический сигнал после звена ОС пропорционален выходному напряжению, то в усилителе используется обратная связь по напряжению; если сигнал на выходе звена ОС пропорционален току в выходной цепи, то используется ОС по току. Возможна и комбинированная ОС.

Воздействие ОС может привести либо к увеличению, либо к уменьшению результирующего сигнала непосредственно на входе усилителя. В первом случае ОС называют положительной, во втором - отрицательной (сигналы на входе усилителя либо складываются, либо вычитаются).

По способу введения сигнала ОС во входную цепь усилителя различают последовательную и параллельную обратные связи. В первом случае напряжение с выхода звена ОС включается последовательно с напряжением источника входного сигнала (рисунок 7, а) во втором - параллельно (рисунок 7, 6).

Рисунок 7 - а) последовательная обратная связь

б) параллельная обратная связь

В усилителях в основном используется отрицательная обратная связь (ООС), введение которой позволяет улучшить почти вое характеристики усилителей. На рисунке 8а показан усилитель, охваченный последовательной отрицательной обратной связью по напряжению. Оценим свойства такого усилителя.

ООС расширяет полосу пропускания (рисунок 8, а) и линейный участок амплитудной характеристики (рисунок 8, б), что приводит к уменьшению искажений как линейных, так и нелинейных.

Рисунок 8 а) - полоса пропускания б) - линейный участок амплитудной характеристики

1.6 Составление структурной схемы

Для проектируемого усилителя целесообразно применить схему, включающую в себя делитель напряжения, разделительные емкостные элементы(конденсаторы).

Делитель напряжения предназначен для смещения напряжения на базе. Делитель состоит из сопротивлений Rб1 и Rб2. Сопротивление Rб1 подключается к положительному контакту источника постоянного напряжения Ек параллельно коллекторному сопротивлению Rк, а Rб2 между ветвью базы и отрицательным контактом источника постоянного напряжения Ек.

Разделительные конденсаторы служат для отсекания постоянной составляющей сигнала по току(т.е. функция этих элементов не пропускать постоянный ток). Располагаются они между каскадами усилителя, между источником сигнала и каскадами, а также между последним каскадом усилителя и нагрузкой(потребителем усиленного сигнала).

Помимо этого используются конденсаторы в цепи эмитерной стабилизации. Подключаются параллельно эмитерному сопротивлению Rэ. Служат для отвода переменной составляющей сигнала от сопротивления эмиттера.

От источника сигнала на первый каскад усилителя подается слабый сигнал, который усиливается на транзисторе за счет постоянного напряжения питания, получаемого от источника питания. Далее уже в несколько раз усиленный сигнал попадает на вход второго каскада, где также посредствам напряжения питания усиливается до нужного уровня сигнала, после чего передается к потребителю (в данном случае-нагрузке).

Принцип действия двухкаскадногоусилителя представлен на рисунке 9.

Рисунок 9- Структурная схема двухкаскадного усилителя

Проведем расчет транзисторного усилителя по заданным параметрам в следующем пункте.

2. РАСЧЕТ ТРАНЗИСТОРНОГО УСИЛИТЕЛЯ

2.1 Технические условия и характеристики для расчета

Технические условия и характеристики для проектирования маломощного низкочастотного усилителя взяты в соответствии с индивидуальным заданием курсового проекта (Варианта 1).

В таблице 1 приведены данные для расчета каскада усилителя низкой частоты на биполярном транзисторе. Схема транзисторного усилительного каскада с общим эмиттером представлена на рисунке 9.

Таблица 1 - Данные варианта для расчета

вариант №

Еи, В Umах вх

Обозначения:

Um вых, В - амплитудное значение напряжения на выходе усилителя;

Um вх, В - амплитудное значение напряжения источника входного сигнала;

Ек - напряжение источника постоянного напряжения в цепи коллектора;

Rи - внутреннее сопротивления источника сигнала (внутреннее сопротивление генератора);

Rн - сопротивление в цепи нагрузки усилителя;

Fн Fв - диапазон усиливаемых частот;

Мв = Мн - коэффициент частотных искажений;

toокр,оС - рабочая температура усилителя.

Рисунок 9 - Схема транзисторного усилительного каскада с общим эмиттером

Расчет каскада усилителя будет выполнен в три этапа:

оценка предельных параметров работы каскада и выбор транзистора;

расчет по постоянному току;

расчет по переменному току.

2.2 Оценка предельных параметров и выбор транзистора

К предельным параметрам транзистора относятся:

1) максимальное напряжение между коллектором и эмиттером транзистора, которое выбирается из соотношения Uкэмах = 1,2 * Ек и в нашем случае равно:

Uкэмах? 1,2 Ч11= 13,2 В.

Выбор транзистора осуществляем по двум параметрам: напряжению Uкэмах и максимальной частоте Fм. Выбираем транзистор типа n-p-n с большим статическим коэффициентом усиления по току h21э (для расчета из справочника выбираем минимальное значение этого коэффициента).

По условиям подходит транзистор КТ315Б. Технические характеристики, которого приведены в Приложении А.

2.3 Расчет первого каскада

2.3.1 Расчет по постоянному току

При проектировании используем графоаналитический метод расчета. Режим по постоянному току транзистора определяет все технико-экономические параметры усилителя. В первую очередь выбираем рабочие точки по току и напряжению входной и выходной (коллекторной) цепи транзистора. Режим постоянного тока обеспечивается сопротивлениями: Rб1, Rб2, Rэ, Rк, которые необходимо найти.

Выбираем рабочую точку транзистора на входной вольт-амперной характеристике (приложение Б), которую обозначим П. Этой точке соответствует постоянный ток базы транзистора - Iбп и напряжение между базой и эмиттером - Uбэп, которые соответственно равны:

Iбп = 0,19 мА

На оси напряжения Uбэ определим минимальное Uбэмин и максимальное Uбэмакс значения напряжения, отложив в обе стороны отрезки равные Umвх. От полученных значений проведем перпендикуляры до пересечения с кривой графика, а от точек пересечения с графиком до оси тока базы Iб. Значения точек пересечения с осью соответственно будут равны Iбмин и Iбмакс

На графике выходных характеристик транзистора (приложение В) определим положение рабочей точки. Рабочий ток покоя коллектора будет равен

Iкп = h21э* Iбп = 50 * 0,19 = 9,5 мА.

Проведя из точки Iкп на оси Iк горизонтальную прямую до пересечения с некоторой ветвью из семейства токов базы. Это будет точкой покоя П коллекторной цепи.

Опуская перпендикуляр на горизонтальную ось напряжения Uкэ, получим точку покоя рабочего напряжения коллектора Uкэп = 9 В.

Построим статическую нагрузочную прямую по двум точкам, одна из которых является П, лежащая на ветви тока базы Iбп. Вторая точка откладывается на горизонтальной оси напряжения Uкэ и равна напряжению питания Ек. (Приложение В)

Построив нагрузочную прямую, при её пересечении с осью коллекторного тока, получаем точку Iкз = 25мА. Это точка, которая имеет смысл тока, который бы протекал в коллекторной цепи при короткозамкнутом транзисторе (перемычке).

1) Сопротивление Rэ предназначено для термокомпенсации рабочего режима каскада и вычисляется по формуле

URэ = 0.1Ч15 = 1,5 В,

Rэ = 1,5 /(9,5*10-3) = 158 Ом.

2) Расчет сопротивлений резисторов Rб1 и Rб2.

Для расчета сопротивлений Rб1 и Rб2 существуют рекомендации выбирать ток делителя Iд в маломощных каскадах в 8-10 раз больше тока базы.

Iд=10*Iбп= 10* 0,19 = 1,9 мА

Iд*Rб2 = Uбэ + Rэ*Iкп и отсюда Rб2 = (Uбэ + Rэ*Iкп)/ Iд

Rб2= (0,5+1,5)/1,9*10-3 = 1053 Ом;

Тогда, Rб1 = (Ек - Iд * Rб2)/ Iд.

Rб1 = (11 -1,9*10-3 *1053)/(1,9Ч10-3) = 4736 Ом

3) Расчет сопротивления Rк

Если Iк = Ек/(Rк + Rэ), то отсюда получим

Rк= Ек /Iкз - Rэ

Rк= 11/ 25*10-3 - 158 = 282 Ом

Таким образом, сопротивления Rк и Rэ, Rб1 и Rб2 найдены.

2.3.2 Динамический расчет каскада

Рассчитаем при заданных технических условиях и характеристиках теоретический коэффициент усиления по напряжению по формуле:

Ku=14B/0,05B=280;

Rб = (4736*1053)/(4736+1053) = 861,463 Ом

Rэкв = (Rи · Rб)/(Rи + Rб),

Rэкв = (100*861,5)/(100+861,5) = 89,6 Ом

Uэкв = (Еи · Rб)/(Rи + Rб)

Uэкв = (0,05*861,5)/(100+861,5) = 0,045 В

Uбдmin = Uбэп - Uэкв = 0,5- 0,045 = 0,455 В;

Uбдmax = Uбэп + Uэкв = 0,5 + 0,045 = 0,545 В.

По динамическим значениям входного напряжения на входной ВАХ находятся соответствующие динамические входные токи

Iбдmin = 0,17 мA;

Iбдmax =0,20мA.

= (RнЧRк)/ (Rн + Rк) = (4500Ч282)/(4500+282)=265,37 Ом.

Iкд = Ек/Rґн

Iкд = 11/265,37 = 0,041 А или 41 мА

Реально нагрузочный динамический диапазон, как следует из приложения В, будет находиться в пределах двух ветвей базового тока Iбд1 и Iбд2. Диапазон изменения выходного напряжения также изменится и будет, в соответствии с динамической нагрузочной прямой, составлять Uкд1 = 5,5 В и Uкд2 = 7В

К = (Uкд2 - Uкд1)/(2·Еи)

К =(7-5,5)/(2*0,05) = 15.

необходимо первый усилительный каскад дополнить вторым каскадом усиления и продолжить расчет.

Uвых=(Uкд2-Uкд1)/2

Uвых = 0,75 В

2.3 Расчет второго каскада

2.3.1 Расчет по постоянному току

Выбираем второй транзистор по тем же параметрам, описанным при выборе первого транзистора. По условиям подходит транзистор КТ807Б технические характеристики, которого приведены в Приложении Г.

Режим постоянного тока обеспечивается сопротивлениями: Rб1, Rб2, Rэ, Rк, которые необходимо найти.

Рабочий режим по постоянному току определяется на входной и выходной вольт - амперных характеристиках (ВАХ), которые представлены в приложении Д и Е соответственно. Графоаналитический расчет выполняется по алгоритму, который использовался для расчета первого каскада.

Найдем по входной и выходной вольтамперной характеристикам следующие данные:

Проведем расчет сопротивлений.

1) Сопротивление Rэ2 предназначено для термокомпенсации рабочего режима каскада и вычисляется по формуле

URэ = 0.1Ч15 = 1,5 В,

Rэ2 = 1,5 /(0,3) = 5 Ом.

2) Расчет сопротивлений резисторов Rб3 и Rб4 .

Для расчета сопротивлений Rб3 и Rб4 существуют рекомендации выбирать ток делителя Iд в маломощных каскадах в 8-10 раз больше тока базы.

Iд=10*Iбп= 10* 10 = 100 мА

Тогда, зная ток базы Iбп и, используя второй закон Кирхгофа, можно записать следующее:

Iд*Rб4 = Uбэ + Rэ*Iкп и отсюда Rб4 = (Uбэ + Rэ2*Iкп)/ Iд

Rб4= (0,65+5*0,3)/0,1 = 21,5 Ом;

Согласно закону Кирхгофа Rб3 = (Ек - Iд Ч Rб4)/ Iд = (11 - 0,1*21,5)/0,1 = 88,5 Ом

3) Расчет сопротивления Rк2

Сопротивление Rк2 найдем из статической нагрузочной прямой.

Точка пересечения нагрузочной прямой и ординаты Iк имеет смысл тока, который бы протекал в коллекторной цепи при короткозамкнутом транзисторе - Iкз. Численное значение тока Iкз может быть найдено из выходной ВАХ КТ807Б, где Iкз = 0,85А.

Если Iкз = Ек/(Rк2 + Rэ2), то отсюда получим

Rк2= Ек /Iкз - Rэ2

Rк2= 11/ 0,85 - 5 = 7,94 Ом

Таким образом, сопротивления Rк2 и Rэ2, Rб3 и Rб4 найдены.

Динамический расчет каскада

Следующим этапом является динамический расчет каскада.

Найдем величину эквивалентного сопротивления базовой цепи переменной составляющей входного тока Rб по формуле:

R"б=(88,5*21,5)/(88,5+21,5)=17,29

Сопротивление эквивалентного генератора входного напряжения рассчитаем по формуле:

Rэкв = (Rи · Rб)/(Rи + Rб),

Rэкв = (100*17,29)/(100+17,29) = 17,74 Ом

Напряжение эквивалентного генератора на входе рассчитаем по формуле:

Uэкв = (Ег· Rб)/(Rи + Rб)

Uэкв = (0,65*17,29)/(100+17,29) = 0,1 В

Это напряжение меньше, чем напряжение источника сигнала, и используя входную характеристику транзистора нужно сначала определить минимальное и максимальное динамическое значение входного напряжения по формуле:

Uбдmin = Uбп - Uэкв = 0,55В;

Uбдmax = Uбп + Uэкв = 0,75В

По динамическим значениям входного напряжения на входной ВАХ находятся соответствующие динамические входные токи:

Iбдmin = 5 мA;

Iбдmax = 30 мA

Следующим шагом необходимо найти выходные динамические параметры каскада, и в первую очередь общее сопротивление коллекторной нагрузки, которое будет найдено из выражения:

= (RнЧRк2)/ (Rн + Rк2) = (4500Ч7,94)/(4507,94)= 7.92 Ом.

Так как сопротивление в коллекторной цепи изменилось по переменному сигналу, необходимо пересчитать и построить динамическую нагрузочную прямую, которая будет пролегать по двум точкам на выходной ВАХ транзистора. Первая точка останется, как и для статического режима (точка П). Вторая точка (фиктивная) должна лежать на ординате Iк и может быть вычислена по формуле:

Iкд = Ек/Rґн

Iкд = 11/7,92 = 1,38А

Реально нагрузочный динамический диапазон будет находиться в пределах двух ветвей базового тока Iбд1 и Iбд2. Диапазон изменения выходного напряжения также изменится и будет, в соответствии с динамической нагрузочной прямой, составлять Uкд1 = 4,9 В и Uкд2 = 12В

Тогда, фактический коэффициент усиления каскада определим из выражения:

К = (Uкд2 - Uкд1)/(2·Еи)

К =(12-4,9)/(2*0,05) = 71.

Сравним фактический коэффициент усиления каскада и коэффициент усиления по напряжению К

Рассчитаем реальное усиление:

Кр =71Ч15= 1065;

Сравним фактический коэффициент усиления каскада и коэффициент усиления по напряжению Кр>Ku (1065>280) => для усиления хватит двух каскадов.

2.3 Расчет разделительных конденсаторов и емкости шунтирующего конденсатора в цепи эмиттера

Емкости межкаскадных связей Ср1, Ср2 предназначены для гальванической развязки (исключение влияния между каскадами по постоянному току) между датчиком и первым каскадом и, дальше между каждым из каскадов по всему тракту усиления. Емкость Сэ предназначена для исключения обратной связи по переменному току в каскадах усиления. Расчет указанных емкостей осуществляется по следующим формулам:

Для второго каскада (по тем же формулам, что и для первого каскада):

ЗАКЛЮЧЕНИЕ

В ходе выполнения курсового проекта был произведен выбор принципиальной схемы, расчет всех элементов двухкаскадного усилителя с заданными техническими характеристиками.

В качестве схемы усилителя взята стандартная схема включения биполярного транзистора с общим эмиттером для проводимости типа n-p-n .Усилитель по току, режим класс «А». Транзисторы кремневые маломощные высокочастотные эпитаксильно планарные n-p-n типа усилительные КТ312Б и КТ807Б.

Разработанный двухкаскадный усилитель соответствует заданным условиям курсового проекта.

СПИСОК ЛИТЕРАТУРЫ

Зайцев:Под ред А.В. Голомедова. - М.: Радио и связь, КубК-а 1994. - 384с.;ил.

Корнев В.А. Методические указания к курсовому проекту. ВКГТУ, 2010.

Полупроводниковые приборы. Транзисторы малой мощности./А.А.

Лаврененко В.Ю. Справочник по полупроводниковым приборам. 9-е издание перераб. К. Технiка, 1980. - 464с.; ил.

Москатов Е. А. Справочник по полупроводниковым приборам. Издание 2. - Таганрог, 219 с., ил.

Справочное пособие по основам электротехники и электроники. /Под ред. А.В.Нетушила. М.: Энергоатомиздат, 1995.

Электротехника и основы электроники. /Под ред. О.П.Глудкина, Б.П.Соколова. М.: Высш. шк., 1993.

Цыкин Г.С. Усилительные устройства. - М. : Связь, 1971.

Назаров С.В. Транзисторные стабилизаторы напряжения. - М. : Энергия, 1980.

Цыкина Л.В. Электронные усилители. - М. : Радио и связь, 1982.

Руденко В.С. Основы преобразовательной техники. - М. : Высшая школа, 1980.

Подобные документы

    Виды транзисторных усилителей, основные задачи проектирования транзисторных усилителей, применяемые при анализе схем обозначения и соглашения. Статические характеристики, дифференциальные параметры транзисторов и усилителей, обратные связи в усилителях.

    реферат , добавлен 01.04.2010

    Характеристики используемого транзистора. Схема цепи питания, стабилизации режима работы, нагрузочной прямой. Определение величин эквивалентной схемы, граничной и предельных частот, сопротивления нагрузки, динамических параметров усилительного каскада.

    курсовая работа , добавлен 09.06.2010

    Проектирование транзисторных усилителей. Формы применения местных и общих отрицательных обратных связей при улучшении параметров усилителя. Анализ ёмкости переходных и блокировочных конденсаторов. Сущность входного сопротивления предварительного каскада.

    курсовая работа , добавлен 22.12.2008

    Характеристика свойств и принципов действия усилителей низкой частоты на биполярных транзисторах. Основные методики проектирования и расчета генераторов колебаний прямоугольной формы с управляемой частотой следования импульсов. Эскиз источника питания.

    курсовая работа , добавлен 20.12.2008

    Частотные и временные характеристики усилителей непрерывных и импульсных сигналов. Линейные и нелинейные искажения в усилителях. Исследование основных параметров избирательных и многокаскадных усилителей. Усилительные каскады на биполярных транзисторах.

    контрольная работа , добавлен 13.02.2015

    Операционные усилители: понятие и параметры. Влияние обратной связи на параметры и характеристики усилителей. Расчет усилительного каскада на биполярном транзисторе. Моделирование схем с помощью программы Elektronik Workbench. Выбор транзистора.

    курсовая работа , добавлен 20.01.2014

    Применение конденсаторов переменной емкости для изменения резонансной частоты контура. Обзор конструкций и выбор направления проектирования конденсатора. Расчет электрических и конструктивных параметров, вычисление температурного коэффициента емкости.

    курсовая работа , добавлен 14.03.2010

    Расчет автогенератора, спектра сигнала на выходе нелинейного преобразователя, электрических фильтров для второй и третьей гармоники. Расчет масштабного, развязывающего и выходных усилителей. Спецификация резистора, усилителя, конденсатора, транзистора.

    курсовая работа , добавлен 28.05.2015

    Понятие электронного усилителя, принцип работы. Типы электронных усилителей, их характеристики. Типы обратных связей в усилителях и результаты их воздействия на работу электронных схем. Анализ электронных усилителей на основе биполярных транзисторов.

    курсовая работа , добавлен 03.07.2011

    Функциональные возможности переменных конденсаторов как элементов колебательных контуров. Обзор конструкций и выбор направления проектирования конденсатора. Расчет электрических и конструктивных параметров, вычисление температурного коэффициента емкости.

Сибирская государственная автомобильно-дорожная академия

Кафедра АПП и Э

КУРСОВОЙ ПРОЕКТ

“РАСЧЕТ ТРАНЗИСТОРНОГО УСИЛИТЕЛЯ

ПО СХЕМЕ С ОБЩИМ ЭМИТТЕРОМ”

по дисциплине: “Электротехника ”

Вариант-17

Выполнил: ст. гр. 31АП

Цигулев С.В.

Проверил: Денисов В.П.

1. Основные понятия

2. Назначение элементов и принцип работы усилительного каскада по схеме с ОЭ

3. Задание на работу

4. Порядок расчета транзисторного усилителя по схеме с ОЭ

Библиографический список

1. Основные понятия

Усилители являются одним из самых распространенных электронных устройств, применяемых в системах автоматики и радиосхемах. Усилители подразделяются на усилители предварительные (усилители напряжения) и усилители мощности. Предварительные транзисторные усилители, как и ламповые, состоят из одного или нескольких каскадов усиления. При этом все каскады усилителя обладают общими свойствами, различие между ними может быть только количественное: разные токи, напряжения, различные значения резисторов, конденсаторов и т. п.

Для каскадов предварительного усилителя наиболее распространены резистивныесхемы (с реостатно-емкостной связью). В зависимости от способа подачи входного сигнала и получения выходного сигнала усилительные схемы получили следующие названия:

1) с общей базой ОБ (рис. 1, а);

2) с общим коллектором ОК (эмиттерный повторитель) (рис. 1, б);

3) с общим эмиттером - ОЭ (рис. 1, в).


Наиболее распространенной является схема с ОЭ. Схема с ОБ в предварительных усилителях встречается редко. Эмиттерный повторитель обладает наибольшим из всех трех схем входным и наименьший выходным сопротивлениями, поэтому его применяют при работе с высокоомными преобразователями в качестве первого каскада усилителя, а также для согласования с низкоомным нагрузочным резистором. В табл. 1 дается сопоставление различных схем включения транзисторов.


Таблица 1

2. Назначение элементов и принцип работы усилительного каскада по схеме с ОЭ

Существует множество вариантов выполнения схемы усилительного каскада на транзисторе ОЭ. Это обусловлено главным образом особенностями задания режима покоя каскада. Особенности усилительных каскадов и рассмотрим на примере схемы рисунок 2, получившей наибольшее применение при реализации каскада на дискретных компонентах.

Основными элементами схемы являются источник питания

, управляемый элемент - транзистор и резистор . Эти элементы образуют главную цепь усилительного каскада, в которой за счет протекания управляемого по цепи базы коллекторного тока создается усиленное переменное напряжение на выходе схемы. Остальные элементы каскада выполняют вспомогательную роль. Конденсаторы , являются разделительными. Конденсатор исключает шунтирование входной цепи каскада цепью источника входного сигнала по постоянному току, что позволяет, во-первых, исключить протекание постоянного тока через источник входного сигнала по цепи → → и, во-вторых, обеспечить независимость от внутреннего сопротивления этого источника напряжения на базе в режиме покоя. Функция конденсатора сводится к пропусканию в цепь нагрузки переменной составляющей напряжения и задержанию постоянной составляющей.

Резисторы

и используются для задания режима покоя каскада. Поскольку биполярный транзистор управляется током, ток покоя управляемого элемента (в данном случае ток ) создается заданием соответствующей величины тока базы покоя . Резистор предназначен для создания цепи протекания тока . Совместно с резистор обеспечивает исходное напряжение на базе относительно зажима ”+” источника питания.

Резистор

является элементом отрицательной обратной связи, предназначенным для стабилизации режима покоя каскада при изменении температуры. Температурная зависимость параметров режима покоя обусловливается зависимостью коллекторного тока покоя от температуры. Основными причинами такой зависимости являются изменения от температуры начального тока коллектора , напряжения и коэффициента . Температурная нестабильность указанных параметров приводит к прямой зависимости тока от температуры. При отсутствии мер по стабилизации тока , его температурные изменения вызывают изменение режима покоя каскада, что может привести, как будет показано далее, к режиму работы каскада в нелинейной области характеристик транзистора и искажению формы кривой выходного сигнала. Вероятность появления искажений повышается с увеличением амплитуды выходного сигнала.

Проявление отрицательной обратной связи и ее стабилизирующего действия на ток

ТРАНЗИСТОРНЫЕ УСИЛИТЕЛИ

Усилители являются одними из самых распространен­ных. электронных устройств, применяемых в системах ав­томатики и радиосистемах. Усилители подразделяются на усилители предварительные (усилители напряжения) и усилители мощности. Предварительные транзисторные усилители, как и ламповые, состоят из одного или не­скольких каскадов усиления. При этом все каскады уси­лителя обладают общими свойствами, различие между ними может быть только количественное: равные токи, напряжения, разные значения резисторов, конденсаторов и т. п.

Для каскадов предварительного усиления наибольшее применение получили резистивные схемы (с реостатно-емкостной связью). В зависимости от способа подачи входного сигнала и получения выходного усилительные схемы получили следующие названия:

1. С общим эмиттером - ОЭ (Error: Reference source not found1).

2. С общей базой - ОБ (Error: Reference source not found).

3. С общим коллектором (эмиттерный повторитель) - ОК (Error: Reference source not found3).

Наиболее распространенной является схема каскада ОЭ, так как она обеспечивает наибольшее усиление сиг­нала по мощности. Схема с ОБ в предварительных усилителях встречается редко. Эмиттерный повторитель об­ладает наибольшим из всех трех схем входным и наи­меньшим выходным сопротивлениями, поэтому его при­меняют в тех случаях, когда эта особенность позволяет согласовать те или иные звенья усилителя в целях улучшения качества усиления.

Рассмотрим усилительный каскад с ОЭ. При расчете кас­када усилителя обычно явля­ются известными:1) R н – сопротивление нагрузки, на кото­рую должен работать рассчи­тываемый каскад. Нагрузкой может являться и аналогичный каскад; 2) I н.м – необходимое значение амплитуды тока на­грузки; 3) допустимые частот­ные искажения; 4) диапазон рабочих температур; 5) в большинстве случаев является заданным напряжение источника питания коллекторной цепи.

В результате расчета должны быть определены: 1) тип транзистора; 2) режим работы выбранного транзистора; 3) параметры каскада; 4) значения всех эле­ментов схемы (резисторы, конденсаторы), их параметры и типы.

Расчет усилителей

Расчет каскада транзисторного усилителя напряжения низкой частоты

с реостатно-емкостной связью

Последовательность расчета приводится для транзи­стора, включенного по схеме ОЭ (общий эмиттер) На рис. 1 дана схема каскада усилителя.

Исходные данные: 1) напряжение на выходе каскада U вых.м (напряжение на нагрузке); 2) сопротив­ление нагрузки R н ; 3) нижняя граничная частота f н ; 4) допустимое значение коэффициента частотных искажений каскада в области нижних частот М н ; 5) напряжение источника питания Е П .

Определить: 1) тип транзистора; 2) режим работы транзистора; 3) сопротивление коллекторной нагрузки R K ; 4) сопротивление в цепи эмиттера R Э ; 5) сопротивле­ния делителя напряжения R 1 и R 2 стабилизирующие ре­жим работы транзистора; 6) емкость разделительного конденсатора С Р; 7) емкость конденсатора в цепи эмитте­ра С Э ; 8) коэффициент усиления каскада по напряже­нию К U .

Порядок расчета

1. Выбираем тип транзистора, руководствуясь следу­ющими соображениями:

а) U кэ.доп  (1,11,3)Е П , U кэ.доп – наибольшее допустимое напряжение между коллектором и эмиттером, приводится в справочниках;

б)

I н.М – наибольшая возможная амплитуда тока нагрузки; I к.доп – наибольший допусти­мый ток коллектора, приводится в справочниках.

Примечания: 1) Заданному диапазону температур удовлетворяет любой транзистор.

2. Для выбранного типа транзистора выписать из справочника значения коэффициентов усиления по току для ОЭ  мин и  М. В некоторых справочниках дается ко­эффициент усиления  по току для схемы ОБ и началь­ный ток коллектора I к.н. . Тогда =/(1-) (при выборе режима работы транзистора необходимо выполнение ус­ловия I к.мин I к.н ). Для каскадов усилителей напряжения обычно при­меняют маломощные транзисторы типа П6; П13; П16; МП33; МП42 и др.

3. Режим работы транзистора определяем по нагрузоч­ной прямой, построенной на семействе выходных статиче­ских (коллекторных) характеристик для ОЭ. Построение нагрузочной прямой показано на Error: Reference source not foundНагрузочная прямая строится по двум точкам: т.0 – точка покоя (рабочая) и т.1, которая определяется величиной напряжения источника питания Е П . Координатами т.0 являются ток покоя I к0 и напряжение покоя U кэ0 (т.е. ток и напря­жение, соответствующие U вх =0).

Можно принять I к0 = (1,05-1,2)I вых  (1,05-1,2)I н.М, но не меньше l мА:

U кэ0 = U вых.м + U ост,

где U ост - наименьшее допустимое напряжение U кэ.

При U кэ <U ост возникают значительные нелинейные искажения, так как в рабочую зону попадают участки характеристик, обладающие большой кривизной. Для маломощных транзисторов можно принять U oc т = l В.

4. Определяем величины сопротивлений R К и R Э .

По выходным характеристикам (Error: Reference source not found) определяем R об = R К + R Э . Общее сопротивление в цепи эмиттер-коллектор

г
де I – ток, определяемый т.4, т.е. точкой пересечения нагрузочной прямой с осью токов.

П
ринимая R Э =(015  0,25)R К, получим

R Э = R об – R К

5. Определяем наибольшие амплитудные значения входного сигнала тока I вх.м и напряже­ния U вх.м, необходимые для обеспечения заданно­го значения, U вых.м. За­давшись наименьшим значением коэффициента усиления транзистора по току  мин получим:


т
огда

По входной статической характеристике для схемы с ОЭ, снятой при U кэ = –5В (Error: Reference source not found), и найденным значениям I б. min и I б. max находят величину 2 U вх.m .

6. Определяем входное сопротивление R вх каскада переменному току (без учета делителя напряжения R 1 и R 2 ):

7
. Определяем сопротивления делителя R 1 к R 2 . Для уменьшения шунтирующего действия делителя на вход­ную цепь каскада по переменному току принимают

R
1-2  (8  12) R вх~



8. Определяем коэффициент стабильности работы каскада:

где  М – наибольший возможный коэффициент усиления по току выбранного типа транзистора.

Для нормальной работы каскада коэффициент стабильности S не должен превышать нескольких единиц. (s
)

9. Определяем емкость разделительного конденсатора С р:


где R вых.Т – выходное сопротивление транзистора, определяемое по выходным статическим характеристикам для схемы ОЭ. В большинстве случаев R вых.Т >>R К , поэтому можно принять R вых R К + R Н .

принимают к установке

10. Определяем емкость конденсатора

1
1. Определяем коэффициент усиления каскада по напряжению:

Примечание. Приведенный порядок расчета не учитывает требований на стабильность работы каскада.

В данной статье расскажем про транзистор. Покажем схемы его подключения и расчёт транзисторного каскада с общим эмиттером.

ТРАНЗИСТОР — это полупроводниковый прибор для усиления, генерирования и преобразования электрических колебаний, выполненный на основе монокристаллического полупроводника (Si – кремния, или — германия), содержащего не менее трёх областей с различной - электронной (n ) и дырочной (p ) - проводимостью. Изобретён в 1948 американцами У. Шокли, У. Браттейном и Дж. Бардином. По физической структуре и механизму управления током различают транзисторы биполярные (чаще называют просто транзисторами) и униполярные (чаще называют полевыми транзисторами). В первых, содержащих два, или более электронно-дырочных перехода, носителями заряда служат как электроны, так и дырки, во вторых - либо электроны, либо дырки. Термн «транзистор» нередко используют для обозначения портативных радиовещательных приёмников на полупроводниковых приборах.

Управление током в выходной цепи осуществляется за счёт изменения входного напряжения или тока. Небольшое изменение входных величин может приводить к существенно большему изменению выходного напряжения и тока. Это усилительное свойство транзисторов используется в аналоговой технике (аналоговые ТВ, радио, связь и т. п.).

Биполярный транзистор

Биполярный транзистор может быть n-p-n и p-n-p проводимости. Не заглядывая во внутренности транзистора, можно отметить разницу проводимостей лишь в полярности подключения в практических схемах источников питания, конденсаторов, диодов, которые входят в состав этих схем. На рисунке справа графически изображены n-p-n и p-n-p транзисторы.

У транзистора три вывода. Если рассматривать транзистор как четырёхполюсник, то у него должно быть два входных и два выходных вывода. Следовательно, какой то из выводов должен быть общим, как для входной, так и для выходной цепи.

Схемы включения транзистора

Схема включения транзистора с общим эмиттером – предназначена для усиления амплитуды входного сигнала по напряжению и по току. При этом входной сигнал, усиливаясь транзистором, инвертируется. Другими словами фаза выходного сигнала поворачивается на 180 градусов. Эта схема, является основной, для усиления сигналов разной амплитуды и формы. Входное сопротивление транзисторного каскада с ОЭ бывает от сотен Ом до единиц килоом, а выходное — от единиц до десятков килоом.

Схема включения транзистора с общим коллектором – предназначена для усиления амплитуды входного сигнала по току. Усиления по напряжению в такой схеме не происходит. Правильнее сказать, коэффициент усиления по напряжению даже меньше единицы. Входной сигнал транзистором не инвертируется.
Входное сопротивление транзисторного каскада с ОК бывает от десятков до сотен килоом, а выходное в пределах сотни ом — единиц килоом. Благодаря тому, что в цепи эмиттера находится, как правило, нагрузочный резистор, схема обладает большим входным сопротивлением. Кроме того, благодаря усилению входного тока, она обладает высокой нагрузочной способностью. Эти свойства схемы с общим коллектором используются для согласования транзисторных каскадов — как «буферный каскад». Так как, входной сигнал, не усиливаясь по амплитуде «повторяется» на выходе, схему включения транзистора с общим коллектором ещё называют Эмиттерный повторитель .

Имеется ещё Схема включения транзистора с общей базой . Эта схема включения в теории есть, но в практике она реализуется очень тяжело. Такая схема включения используется в высокочастотной технике. Особенность её в том, что у неё низкое входное сопротивление, и согласовать такой каскад по входу сложно. Опыт в электронике у меня не малый, но говоря об этой схеме включения транзистора, я извините, ничего не знаю! Пару раз использовал как «чужую» схему, но так и не разбирался. Объясню: по всем физическим законам транзистор управляется его базой, вернее током, протекающим по пути база-эмиттер. Использование входного вывода транзистора — базы на выходе — не возможно. На самом деле базу транзистора через конденсатор «сажают» по высокой частоте на корпус, а на выходе её и не используют. А гальванически, через высокоомный резистор, базу связывают с выходом каскада (подают смещение). Но подавать смещение, по сути можно откуда угодно, хоть от дополнительного источника. Всё равно, попадающий на базу сигнал любой формы гасится через тот же самый конденсатор. Чтобы такой каскад работал, входной вывод — эмиттер через низкоомный резистор «сажают» на корпус, отсюда и низкое входное сопротивление. В общем, схема включения транзистора с общей базой — тема для теоретиков и экспериментаторов. На практике она встречается крайне редко. За свою практику в конструировании схем никогда не сталкивался с необходимостью использования схемы включения транзистора с общей базой. Объясняется это свойствами этой схемы включения: входное сопротивление — от единиц до десятков Ом, а выходное сопротивление — от сотен килоом до единиц мегаом. Такие специфические параметры — редкая потребность.

Биполярный транзистор может работать в ключевом и линейном (усилительном) режимах. Ключевой режим используется в различных схемах управления, логических схемах и др. В ключевом режиме, транзистор может находиться в двух рабочих состояниях – открытом (насыщенном) и закрытом (запертом) состоянии. Линейный (усилительный) режим используется в схемах усиления гармонических сигналов и требует поддержания транзистора в «наполовину» открытом, но не насыщенном состоянии.

Для изучения работы транзистора, мы рассмотрим схему включения транзистора с общим эмиттером, как наиболее важную схему включения.

Схема изображена на рисунке. На схеме VT – собственно транзистор. Резисторы R б1 и R б2 – цепочка смещения транзистора, представляющая собой обыкновенный делитель напряжения. Именно эта цепь обеспечивает смещение транзистора в «рабочую точку» в режиме усиления гармонического сигнала без искажений. Резистор R к – нагрузочный резистор транзисторного каскада, предназначен для подвода к коллектору транзистора электрического тока источника питания и его ограничения в режиме «открытого» транзистора. Резистор R э – резистор обратной связи, по своей сути увеличивает входное сопротивление каскада, при этом, уменьшает усиление входного сигнала. Конденсаторы С выполняют функцию гальванической развязки от влияния внешних цепей.

Чтобы Вам было понятнее, как работает биполярный транзистор, мы проведём аналогию с обычным делителем напряжения (см. рис. ниже). Для начала, резистор R 2 делителя напряжения сделаем управляемым (переменным). Изменяя сопротивление этого резистора, от нуля до «бесконечно» большого значения, мы можем получить на выходе такого делителя напряжение от нуля до значения, подаваемого на его вход. А теперь, представим себе, что резистор R 1 делителя напряжения – это коллекторный резистор транзисторного каскада, а резистор R 2 делителя напряжения – это переход транзистора коллектор-эмиттер. При этом, подавая на базу транзистора управляющее воздействие в виде электрического тока, мы изменяем сопротивление перехода коллектор-эмиттер, тем самым меняем параметры делителя напряжения. Отличие от переменного резистора в том, что транзистор управляется слабым током. Именно так и работает биполярный транзистор. Вышеуказанное изображено на рисунке ниже:

Для работы транзистора в режиме усиления сигнала, без искажения последнего, необходимо обеспечить этот самый рабочий режим. Говорят о смещении базы транзистора. Грамотные специалисты тешат себя правилом: Транзистор управляется током – это аксиома. Но режим смещения транзистора устанавливается напряжением база-эмиттер, а не током – это реальность. И у того, кто не учитывает напряжение смещения, никакой усилитель работать не будет. Поэтому в расчётах его значение должно учитываться.

Итак, работа биполярного транзисторного каскада в режиме усиления происходит при определённом напряжении смещения на переходе база-эмиттер. Для кремниевого транзистора значение напряжения смещения лежит в пределах 0,6…0,7 вольт, для германиевого – 0,2…0,3 вольта. Зная об этом понятии, можно не только рассчитывать транзисторные каскады, но и проверять исправность любого транзисторного усилительного каскада. Достаточно мультиметром с высоким внутренним сопротивлением измерить напряжение смещения база-эмиттер транзистора. Если оно не соответствует 0,6…0,7 вольт для кремния, или 0,2…0,3 вольта для германия, тогда ищите неисправность именно здесь – либо неисправен транзистор, либо неисправны цепи смещения или развязки этого транзисторного каскада.

Вышеуказанное, изображено на графике – вольтамперной характеристике (ВАХ).

Большинство из «спецов», посмотрев на представленную ВАХ скажет: Что за ерунда нарисована на центральном графике? Так выходная характеристика транзистора не выглядит! Она представлена на правом графике! Отвечу, там всё правильно, а началось это с электронно-вакуумных ламп. Раньше вольтамперной характеристикой лампы считалось падение напряжения на анодном резисторе. Сейчас, продолжают измерять на коллекторном резисторе, а на графике приписывают буквы, обозначающие падение напряжения на транзисторе, в чём глубоко ошибаются. На левом графике I б – U бэ представлена входная характеристика транзистора. На центральном графике I к – U кэ представлена выходная вольтамперная характеристика транзистора. А на правом графике I R – U R представлен вольтамперный график нагрузочного резистора R к , который обычно выдают за вольтамперную характеристику самого транзистора.

На графике имеет место линейный участок, используемый для линейного усиления входного сигнала, ограниченный точками А и С . Средняя точка – В , является именно той точкой, в которой необходимо содержать транзистор, работающий в усилительном режиме. Этой точке соответствует определённое напряжение смещения, которое при расчётах обычно берут: 0,66 вольт для транзистора из кремния, или 0,26 вольт для транзистора из германия.

По вольтамперной характеристике транзистора мы видим следующее: при отсутствии, или малом напряжении смещения на переходе база-эмиттер транзистора, ток базы и ток коллектора отсутствуют. В этот момент на переходе коллектор-эмиттер падает всё напряжение источника питания. При дальнейшем повышении напряжения смещения база-эмиттер транзистора, транзистор начинает открываться, появляется ток базы и вместе с ним растёт ток коллектора. При достижении «рабочей области» в точке С , транзистор входит в линейный режим, который продолжается до точки А . При этом, падение напряжения на переходе коллектор-эмиттер уменьшается, а на нагрузочном резисторе R к , наоборот увеличивается. Точка В – рабочая точка смещения транзистора, — это такая точка, при которой на переходе коллектор — эмиттер транзистора, как правило, устанавливается падение напряжения равное ровно половине напряжения источника питания. Отрезок АЧХ от точки С , до точки А называют рабочей областью смещения. После точки А , ток базы и следовательно ток коллектора резко возрастают, транзистор полностью открывается — входит в насыщение. В этот момент, на переходе коллектор-эмиттер падает напряжение обусловленное структурой n-p-n переходов, которое приблизительно равно 0,2…1 вольт, в зависимости от типа транзистора. Всё остальное напряжение источника питания падает на сопротивлении нагрузки транзистора – резисторе R к ., который кроме того, ограничивает дальнейший рост тока коллектора.

По нижним «дополнительным» рисункам, мы видим, как изменяется напряжение на выходе транзистора в зависимости от подаваемого на вход сигнала. Выходное напряжение (падение напряжения на коллекторе) транзистора противофазно (на 180 градусов) к входному сигналу.

Расчёт транзисторного каскада с общим эмиттером (ОЭ)

Прежде чем перейти непосредственно к расчёту транзисторного каскада, обратим внимание на следующие требования и условия:

Расчёт транзисторного каскада проводят, как правило, с конца (т.е. с выхода);

Для расчета транзисторного каскада нужно определить падение напряжения на переходе коллектор-эмиттер транзистора в режиме покоя (когда отсутствует входной сигнал). Оно выбирается таким, чтобы получить максимально неискаженный сигнал. В однотактной схеме транзисторного каскада работающего в режиме «A» это, как правило, половина значения напряжения источника питания;

В эмиттерной цепи транзистора бежит два тока — ток коллектора (по пути коллектор-эмиттер) и ток базы (по пути база-эмиттер), но так как ток базы достаточно мал, им можно пренебречь и принять, что ток коллектора равен току эмиттера;

Транзистор – усилительный элемент, поэтому справедливо будет заметить, что способность его усиливать сигналы должна выражаться какой-то величиной. Величина усиления выражается показателем, взятым из теории четырёхполюсников — коэффициент усиления тока базы в схеме включения с общим эмиттером (ОЭ) и обозначается он — h 21 . Его значение приводится в справочниках для конкретных типов транзисторов, причём, обычно в справочниках приводится вилка (например: 50 – 200). Для расчётов обычно выбирают минимальное значение (из примера выбираем значение — 50);

Коллекторное (R к ) и эмиттерное (R э ) сопротивления влияют на входное и выходное сопротивления транзисторного каскада. Можно считать, что входное сопротивление каскада R вх =R э *h 21 , а выходное равно R вых =R к . Если Вам не важно входное сопротивление транзисторного каскада, то можно обойтись вовсе без резистора R э ;

Номиналы резисторов R к и R э ограничивают токи, протекающие через транзистор и рассеиваемую на транзисторе мощность.

Порядок и пример расчёта транзисторного каскада с ОЭ

Исходные данные:

Питающее напряжение U и.п. =12 В.

Выбираем транзистор, например: Транзистор КТ315Г, для него:

P max =150 мВт; I max =150 мА; h 21 >50.

Принимаем R к =10*R э

Напряжение б-э рабочей точки транзистора принимаем U бэ = 0,66 В

Решение:

1. Определим максимальную статическую мощность, которая будет рассеиваться на транзисторе в моменты прохождения переменного сигнала, через рабочую точку В статического режима транзистора. Она должна составлять значение, на 20 процентов меньше (коэффициент 0,8) максимальной мощности транзистора, указанной в справочнике.

Принимаем P рас.max =0,8*P max =0,8*150 мВт=120 мВт

2. Определим ток коллектора в статическом режиме (без сигнала):

I к0 =P рас.max /U кэ0 =P рас.max /(U и.п. /2) = 120мВт/(12В/2) = 20мА.

3. Учитывая, что на транзисторе в статическом режиме (без сигнала) падает половина напряжения питания, вторая половина напряжения питания будет падать на резисторах:

(R к +R э )=(U и.п. /2)/I к0 = (12В/2)/20мА=6В/20мА = 300 Ом.

Учитывая существующий ряд номиналов резисторов, а также то, что нами выбрано соотношение R к =10*R э , находим значения резисторов:

R к = 270 Ом; R э = 27 Ом.

4. Найдем напряжение на коллекторе транзистора без сигнала.

U к0 =(U кэ0 + I к0 *R э )=(U и.п. — I к0 *R к ) = (12 В — 0,02А * 270 Ом) = 6,6 В.

5. Определим ток базы управления транзистором:

I б =I к /h 21 =/h 21 = / 50 = 0,8 мА.

6. Полный базовый ток определяется напряжением смещения на базе, которое задается делителем напряжения R б1 ,R б2 . Ток резистивного базового делителя должен быть на много больше (в 5-10 раз) тока управления базы I б , чтобы последний не влиял на напряжение смещения. Выбираем ток делителя в 10 раз большим тока управления базы:

R б1 ,R б2 : I дел. =10*I б = 10 * 0,8 мА = 8,0 мА.

Тогда полное сопротивление резисторов

R б1 +R б2 =U и.п. /I дел. = 12 В / 0,008 А = 1500 Ом.

7. Найдём напряжение на эмиттере в режиме покоя (отсутствия сигнала). При расчете транзисторного каскада необходимо учитывать: напряжение база-эмиттер рабочего транзистора не может превысить 0,7 вольта! Напряжение на эмиттере в режиме без входного сигнала примерно равно:

U э =I к0 *R э = 0,02 А * 27 Ом= 0,54 В,

где I к0 — ток покоя транзистора.

8. Определяем напряжение на базе

U б =U э +U бэ =0,54 В+0,66 В=1,2 В

Отсюда, через формулу делителя напряжения находим:

R б2 = (R б1 +R б2 )*U б /U и.п. = 1500 Ом * 1,2 В / 12В = 150 Ом R б1 = (R б1 +R б2 )-R б2 = 1500 Ом — 150 Ом = 1350 Ом = 1,35 кОм.

По резисторному ряду, в связи с тем, что через резистор R б1 течёт ещё и ток базы, выбираем резистор в сторону уменьшения: R б1 =1,3 кОм.

9. Разделительные конденсаторы выбирают исходя из требуемой амплитудно-частотной характеристики (полосы пропускания) каскада. Для нормальной работы транзисторных каскадов на частотах до 1000 Гц необходимо выбирать конденсаторы номиналом не менее 5 мкФ.

На нижних частотах амплитудно-частотная характеристика (АЧХ) каскада зависит от времени перезаряда разделительных конденсаторов через другие элементы каскада, в том числе и элементы соседних каскадов. Ёмкость должна быть такой, чтобы конденсаторы не успевали перезаряжаться. Входное сопротивление транзисторного каскада много больше выходного сопротивления. АЧХ каскада в области нижних частот определяется постоянной времени t н =R вх *C вх , где R вх =R э *h 21 , C вх — разделительная входная емкость каскада. C вых транзисторного каскада, это C вх следующего каскада и рассчитывается она так же. Нижняя частота среза каскада (граничная частота среза АЧХ) f н =1/t н . Для качественного усиления, при конструировании транзисторного каскада необходимо выбирать, чтобы соотношение 1/t н =1/(R вх *C вх )< в 30-100 раз для всех каскадов. При этом чем больше каскадов, тем больше должна быть разница. Каждый каскад со своим конденсатором добавляет свой спад АЧХ. Обычно, достаточно разделительной емкости 5,0 мкФ. Но последний каскад, через Cвых обычно нагружен низкоомным сопротивлением динамических головок, поэтому емкость увеличивают до 500,0-2000,0 мкФ, бывает и больше.

Расчёт ключевого режима транзисторного каскада производится абсолютно так же, как и ранее проведённый расчёт усилительного каскада. Отличие заключается только в том, что ключевой режим предполагает два состояния транзистора в режиме покоя (без сигнала). Он, или закрыт (но не закорочен), или открыт (но не перенасыщен). При этом, рабочие точки «покоя», находятся за пределами точек А и С изображённых на ВАХ. Когда на схеме в состоянии без сигнала транзистор должен быть закрыт, необходимо из ранее изображённой схемы каскада удалить резистор R б1 . Если же требуется, чтобы транзистор в состоянии покоя был открыт, необходимо в схеме каскада увеличить резистор R б2 в 10 раз от расчётного значения, а в отдельных случаях, его можно удалить из схемы.

Расчёт транзисторного каскада окончен.