Многие задают вопрос: сервопривод - что это такое? Классическая конструкция сервопривода включает в себя двигатель, датчик позиционирования и трехконтурную управляющую систему (регуляция позиции, скорости и тока).

Слово «серво» имеет латинское происхождение «servus», дословно переводится как «раб», «помощник», «прислужник».

В машиностроительной отрасли устройства выступали в роли вспомогательных компонентов (привод подачи в станке, роботе и т.д.). Однако сегодня ситуация поменялась, и главное назначение сервопривода заключено в реализации в области сервомеханизмов.

Установка сервопривода оправдана в том случае, когда обычные регулируют точность работы в недостаточной мере.

Применение приборов высокого качества необходимо в оборудовании, отличающемся высоким уровнем производительности.

В этой статье будет рассказано про сервопривод, что это такое и как он функционирует.

Области использования устройства

В современном мире, когда автоматизация заняла прочные позиции во всех областях машиностроения, конструкция всех механизмов заметно унифицировалась. При этом применяются современные индивидуальные приводы.

Для того, чтобы понять, сервопривод, что это такое, следует знать сферу применения устройства.

Устройства содержат прецизионные конструкции поддержания скорости в и станках с высокой точностью. Они монтируются на сверлильных оборудованиях, в различных системах транспорта и механизмах вспомогательного характера.

Самое широкое применение приборы нашли в следующих сферах:

  • изготовление бумаги и упаковок;
  • изготовление листов из металла;
  • обрабатывание материалов;
  • производство транспортного оборудования;
  • изготовление стройматериалов.

Сервоприводы на багажник автомобиля

Существует множество моделей сервоприводов для багажника машины от разных производителей. Рассмотрим функциональность такого устройства, как сервопривод багажника от отечественного производителя «Автозебра». Устройство рассчитано на российские автомобили, но не только. К примеру, оно может использоваться в автомобиле «Рено Логан».

По отзывам пользователей, эта конструкция отличается удобством. Она позволяет, не выходя из авто, осуществлять открывание и закрывание багажника.

Управление устройством осуществляет посредством кнопки, вмонтированной в салон автомобиля или же в

Причина широкого использования прибора

Причиной частого применения сервоприводов стали:

  • возможность получения управления, отличающегося высокой точностью и стабильным функционированием;
  • широкий диапазон контроля скорости;
  • высокий уровень устойчивости к помехам;
  • маленький размер и вес устройства.

Принцип функционирования сервопривода

Как же работает устройство? Сервопривод, принцип работы которого основан на обратной связи с одним или более системными сигналами, регулирует объект. Выходной показатель устройства поступает на вход, где идет сравнение с задающим действием.

Особенности механизма

Устройство сервопривода обладает двумя основными особенностями:

  • способностью повышать мощность;
  • обеспечением обратной информационной связи.

Усиление требуется с той целью, что нужная на выходе энергия очень высока (поступает из внешнего источника), а на входе ее показатель незначителен.

Обратная связь — это не что иное, как контур с замкнутой схемой, в котором сигналы не согласованы на входе и выходе. Этот процесс применяется для управления.

Отсюда вытекает вывод: контур при прямом направлении служит передатчиком энергии, а при обратном направлении — передатчиком информации, которая нужна для точности управления.

Питание и цоколевка разъемов устройства

Сервопривод, принцип работы которого применим в радиоуправляемых конфигурациях, обычно обладает тремя проводами:

  1. Сигнализирующим. По нему осуществляется передача управляющего импульса. Как правило, провод окрашен в белый, желтый или же красный цвет.
  2. Питающим. Показатель его мощности составляет от 4,8 до 6 В. Зачастую, это красный провод.
  3. Заземляющим. Провод черный или коричневый.

Размеры приводов

По размерам агрегаты подразделяются на три категории:

  • микроприводы;
  • стандартные модификации;
  • крупные устройства.

Встречаются сервоприводы и с другими показателями размеров, однако вышеперечисленные виды составляют 95% от всех устройств.

Основные характеристик изделия

Работа сервопривода характеризуется двумя основными показателями: скоростью поворота и усилия на валу. Первая величина служит показателем времени, которое измеряется в секундах. Усилие мерится в кг/см, то есть, какой уровень усилия развивает механизм от центра вращения.

Вообще данный параметр находится в зависимости от основного назначения устройства, а уже потом от числа передач редуктора и используемых в устройстве узлов.

Как уже упоминалось, сейчас выпускают механизмы, функционирующие при показателе напряжения питания от 4,8 до 6 В. Чаще этот показатель равен 6 В. Однако не все модели рассчитаны на широкий диапазон напряжений. Иногда двигатель сервопривода работает лишь при 4,8 В или же только при 6 В (последние конфигурации производятся крайне редко).

Аналоговые и цифровые модификации

Несколько лет тому назад все сервосхемы были аналоговыми. Сейчас появились и цифровые конструкции. В чем же разница их работы? Давайте обратимся к информации официального характера.

Из отчета фирмы Futaba следует, что за последнее десятилетие сервоприводы стали отличаться более хорошими техническими показателями, чем раньше, а также малыми размерами, высоким уровнем скорости вращения и показателем элементов кручения.

Последний виток развития — появление устройства на цифровой основе. Эти агрегаты обладают существенными преимуществами даже перед моторами коллекторного типа. Хотя имеются и некоторые минусы.

Внешне аналоговые и цифровые устройства неразличимы. Отличия фиксируются лишь на платах устройств. Вместо микросхемы на цифровом агрегате можно увидеть микропроцессор, анализирующий сигнал приемника. Он и управляет двигателем.

Совершенно неправильно говорить о том, что аналоговая и цифровая модификация в корне различаются при функционировании. Они могут обладать одинаковыми двигателями, механизмами и потенциометрами

Основным отличием является способ переработки поступающего сигнала приемника и управление двигателем. В оба сервопривода поступает одинаковый по мощности сигнал радиоприемника.

Таким образом, становится понятно, сервопривод, что это такое?

Принцип работы аналоговой модификации

В аналоговой модификации полученный сигнал сравним с текущим положением сервомотора, а затем на двигатель поступает сигнал усилителя, вызывающий перемещение двигателя в заданную позицию Показатель частоты процесса составляет 50 раз за одну секунду. Это минимальный показатель времени реагирования. Если же вы отклоните ручку на передатчике, то на сервопривод начнут поступать короткие импульсы, промежуток между которыми станет равняться 20 м/сек. Между импульсами на мотор ничего не поступает, и воздействие извне может изменить функционирование устройства в любую сторону. Этот временной промежуток называется «мертвая зона».

Принцип работы цифровой конструкции

Цифровыми устройствами используется специальный процессор, функционирующий на высоких частотах. Он обрабатывает сигнал приемника и посылает импульсы управления в двигатель с показателем частоты в 300 раз в секунду. Так как показатель частоты значительно выше, то и реакция заметно быстрее и держит позицию лучше. Это вызывает оптимальное центрирование и высокий уровень кручения. Но такой метод требует больших затрат энергии, поэтому батарея, используемая в аналоговом механизме, в этой конструкции будет разряжаться намного быстрее.

Однако все пользователи, которые хоть однажды столкнулись с цифровой моделью, говорят о том, что ее различие с аналоговой конструкцией настолько значительно, что они никогда бы больше не употребляли последнюю.

Заключение

Вашим выбором станут цифровые аналоги, если вам требуются:

  • высокий уровень ;
  • минимальное количество «мертвых зон»;
  • точный уровень позиционирования;
  • быстрая реакция на команду;
  • беспеременное усилие на валу при повороте;
  • высокий уровень мощности.

Теперь вы знаете, что такое сервопривод и как его использовать.

Сервопривод (лат.servus - слуга, помощник; следящий привод) — привод с управлением через отрицательную обратную связь, позволяющую точно управлять параметрами движения.

Сервопривод чаще всего встречается в робототехнике. Без него невозможно обойтись, особенно когда речь идет о решении задачи точного перемещения грузов или предметов. Такая задача возникает при выполнении какой-либо механической работы (покраска, сварка, шлифовка, перемещение изделий на конвейере и т. д.). Выполняют такую работу манипуляторы, которые выглядят как механические руки. Собственно говоря, знаменитая промышленная робототехника, которая используется для автоматизации производства по всему миру, представлена прежде всего манипуляторами. И не один такой манипулятор не обходится без сервоприводов, которые приводят в действие его звенья. Почему?

Все дело в свойствах сервопривода. Сервопривод — это привод, в котором используется отрицательная обратная связь, позволяющая точно управлять параметрами движения исполнительного(выходного) звена привода (чаще всего это выходной вал). Для создания такой обратной связи обычно используется датчик положения выходного звена сервопривода, но могут применяться и датчики скорости, усилия и т. д. Получается, что сервопривод — это привод, на который подается сигнал, указывающий выдвинуться или повернуться в определенное положение. Он в это положение устанавливается и «ждет», пока не поступит команда об изменении положения. Например, подается сигнал об установке вала в угловое положение 90 градусов. Вал поворачивается в это положение и держит его, пока не придет сигнал о новом положении. Такие возможности управления серьезно отличают сервопривод от обычного мотор-редуктора, который способен только непрерывно вращаться, пока на него подано напряжение. В результате, если такими приводами оснащен робот, то он может двигаться подобно руке человека и выполнять всю ту работу, которую можем выполнять мы.

Разновидностей сервоприводов в промышленности многоВ этой статье мы будем рассматривать электрические сервоприводы вращательного действия. Проще говоря, у таких сервоприводов выходным исполнительным звеном является вращающийся вал. Для простоты мы рассмотрим устройство хобби-сервопривода SG-90 (рис. 1), который активно применяется для создания учебных моделей роботов и прочих плавающих, летающих или ходящих механизмов. Хобби-сервопривод в отличие от промышленного существенно меньше по размерам, развивает меньшее усилие, по-другому управляется, но по общему принципу действия абсолютно идентичен промышленному собрату.

Рисунок 1

Устройство хобби-сервопривода показано на рисунке 2. В его состав входит электродвигатель, редуктор с набором шестеренок, потенциометр (выполняет функцию датчика положения для обратной связи), электронная плата управления электродвигателем и корпус, в который заключено все содержимое. На этом же рисунке показан провод, посредством которого сервопривод питается и управляется. Он состоит из 3-х жил: питание «плюс», питание «минус» и провод, на который подается управляющий сигнал. На разных моделях хобби-сервоприводов провода могут иметь разный цвет. Но практически всегда провод питания «плюс» окрашен в красный цвет, а провод питания «минус» - в черный. В отношении же сигнального провода (для передачи управляющего сигнала) четких цветовых стандартов нет. У разных производителей сервоприводов сигнальный провод может быть белым, оранжевым или желтым.

Рисунок 2

Для управления такими двигателями принят стандарт управляющего сигнала. Он представляет собой постоянно повторяющиеся импульсы или, как мы говорим, череду импульсов (Рис. 3). Частота этих импульсов все время остается постоянной и составляет 50 Гц. Получается, что временной период импульсов (время между передними фронтами соседних импульсов) составляет 1с/50 = 0,02 секунды, т. е. 20 миллисекунд.

Рисунок 3

Что интересно, угловое положение выходного вала сервопривода задается продолжительностью подаваемого импульса. Для пояснения на рисунке 4 показано приблизительное соотношение ширины импульса во временных координатах и угла поворота вала сервопривода. Управление поворотом вала сервопривода выполняется с помощью импульсов продолжительностью от 1 до 2 мс (миллисекунд).

Рисунок 4

Как видно из графика, для управления сервоприводом используется не что иное как сигнал с широтно импульсной модуляцией - ШИМ. Что такое ШИМ можно узнать из соответствующей статьи на нашем сайте.

А как ширина импульса превращается в угол вала на выходе?

Как указано на рисунке 2, в корпусе сервопривода присутствует еще и электронный модуль управления мотором. Подаваемый на сервопривод сигнал попадает на эту плату. А вот то, что происходит с этим сигналом дальше, показано на блок-схеме рисунок 5, которую мы проанализируем поэтапно. Каждый этап изображен прямоугольником или кружочком и пронумерован. Внутри этих прямоугольников изображены устройства, на которых происходит преобразование или обработка сигнала.

Рисунок 5

Итак, входной управляющие сигнал Sупр с ШИМ модуляцией приходит на специальную микросхему с логическими элементами, с помощью которой преобразуется в напряжение Uупр (этап №1). После этого сигнал Uупр (управляющее напряжение) поступает на элемент сравнения напряжений. Данный элемент называется сумматором, но на самом деле он из входного сигнала Uупр вычитает напряжение Uобр (напряжение обратной связи), приходящее через обратную связь с переменного резистора (этап №2).

Получившаяся разница Uкорр (корректирующее напряжение) усиливается встроенным усилителем (этап №3) и подается на электродвигатель. Мотор вращается (этап №4) и приводит в движение выходной вал сервопривода, а вместе с ним и датчик обратной связи в виде потенциометра. При вращении ручки потенциометра изменяется напряжение и получается, что поворот вала преобразуется в напряжение Uобр (этап №5). Это напряжение Uобр сравнивается (снова этап №2) с напряжением Uупр, и разница в виде Uкорр снова идет на усилитель (этап №3) и так далее. Сигнал «ходит» по цепи с обратной связью до тех пор, пока не выполнится соотношение Uупр = Uобр. Тогда Uкорр станет равно 0, и двигатель остановится. Произойдет это тогда, когда вал сервопривода займет положение, соответствующее входному управляющему сигналу Sупр.

Обобщим все сказанное. Вал сервопривода механически соединен с ручкой потенциометра. Из-за этого вместе с поворотом вала сервопривода поворачивается потенциометр, в результате чего изменяется его сопротивление и выходное напряжение Uобр. Соответственно, выходное напряжение с потенциометра Uобр прямо зависит от угла поворота сервопривода. Одновременно входной в сервопривод сигнал Sупр с продолжительностью импульсов от 0,001 до 0,002 секунды задает уровень напряжения Uупр, которое определяет угол на который должен повернуться вал сервопривода. Остановка электродвигателя в момент, когда вал сервопривода именно в нужном положении, достигается за счет вычитания из сигнала Uупр сигнала обратной связи Uобр. А усилитель этапа №3 необходим для того, чтобы на электродвигатель подавалось усиленное напряжение и двигатель переводил вал сервопривода в заданное положение максимально быстро.

Примеры управления серводвигателем

Как было сказано выше, для управления серводвигателем приминяется ШИМ с определенными параметрами. Сгенерировать такую ШИМ можно различными способами. Покажем некоторые из них.

1. Управление серводвигателем при помощи 555 таймера . Микросхема таймера 555 может работать в режиме генератора импульсов (подробнее об этой микросхеме читайте соответствующую статью). Следовательно можно подобрать такие параметры работы этой микросхемы, что бы она выдавала нужные нам импульсы. Путем изменения скважности этих импульсов, т. е. изменения продолжительности импульсов от 0,001 до 0,002 секунды, мы и будем задавать угол поворота вала сервопривода.

Для того чтобы реализовать ШИМ сигнал, необходимо использовать схему с регулируемой скважностью импульсов при неизменной частоте 50 Гц. Параметры компонентов на схеме (рис.6) подобраны таким образом, чтобы обеспечить эти условия. Но чтобы сигнал управления удовлетворял всем условиям, его необходимо инвертировать. Транзистор в схеме необходим именно для этого. Чтобы управлять скважностью в заданных пределах, потребовался бы потенциометр на максимальное сопротивление 20 кОм. Мы будем использовать два потенциометра по 10 кОм (так как именно такие потенциометры используются в Основном наборе 1-ого уровня Эвольвектор , где эта схема подробно описана. Рабочий ход серводвигателя составляет 180 градусов. В этом случае при вращении ручки одного потенциометра сервопривод будет поворачиваться на 90 градусов, а при дополнительном вращении другого — на вторые 90 градусов.

Рисунок 6

Более подробно изучить данную схему, а так же собрать ее, вы сможете купив Основной набор 1-ого уровня Эвольвектор .

2. Управление серводвигателем при помощи контроллера. Сгенерировать нужный сигнал ШИМ так же можно при помощи контроллера. Например можно использовать программируемый контроллер на платформе Ардуино. Чтобы максимально упростить программирование алгоритма управления серводвигателем (генерацию ШИМ) применяются заранее написанные программы, называемые библиотеками. Их сложный программный код скрыт от пользователя, предлагается только вызов нужных нам функций посредством коротких команд при подключении библиотеки к нашей основной программе. Все это делает сложное с алгоритмической точки зрения управление такими устройствами как серводвигатель крайне простым и удобным.

Схема подключения, а так же Скетч (программа) для управления серводвигателем контроллером Arduino показаны на рисунке 7.

Рисунок 7

ВНИМАНИЕ: Подключение питания серводвигателя к плате напрямую, как в нашем примере (рисунок 7), нежелательно. У нас на рисунке подключен один серводвигатель из категории «мини», потребляющий очень небольшие токи, отчего он вполне штатно работает, питаясь непосредственно от платы. Сервопривод стандартного размера требует большей мощности, что может привести к перегреву и повреждению контроллера. Подключение питания двигателей следует осуществлять только через отдельный источник, особенно если предполагается управление одновременно несколькими сервоприводами.

#include <Servo .h> - эта команда означает подключение библиотеки для управления сервоприводом. Эта библиотека присутствует на диске Эвольвектор, который поставляется совместно с нашими наборами 2-ого уровня. Так же её можно найти в интернете и положить в папку «libraries» вашей Arduino IDE.
Подключенная нами библиотека имеет большое количество команд, мы рассмотрим только те, который используются в программе.

Servo dvig ; - это объявление переменной специального типа. dvig - это переменная (название выбираем произвольно). Servo - это тип переменной (специальный тип, который задается в присоединенной библиотеке). Можно задать до 12 переменных этого типа, то есть для управления 12 серво-приводами. Иными словами, этой командой мы сообщили плате, что у нас есть сервопривод, который мы назвали dvig .
dvig.attach (9); - эта команда означает, что серво-привод (dvig ) присоединен к 9 пину (выводу).
dvig.write (90) ; - эта команда заставляет сервопривод (dvig ) повернуться в среднее положение (90 градусов).
dvig.write (0) ; - поворачивает сервопривод в положение 0 градусов.
dvig.write (180) ; - поворачивает сервопривод в положение 180 градусов.

Что означают остальные строки в программе вы можете найти на страницах нашего сайта или узнать из учебных пособий которые входят в состав

Сервопривод — сервомотор является электродвигателем, который осуществляет работу, основанную на принципе обратной связи. От ротора двигателя вращение через редуктор передается к управляющему механизму, обратная связь осуществляется управляющим блоком, который связан с датчиком, контролирующим угол поворота.
Сервомоторами пользуются в автомобилях, чтобы обеспечить линейное и угловое перемещение элементов, к точному положению которых предъявляются высокие требования. Принцип работы сервопривода основан на корректировки работы электродвигателя, чтобы исполнить управляющий сигнал.

Сервопривод — состав и назначение

Если управляющим сигналом задается угол, с которым поворачивается выходной вал мотора, он преобразуется в подаваемое напряжение. Для обратной связи используют датчик, измеряющий одну из выходных характеристик мотора. Показания, собираемые датчиком обрабатывается блоком управления, затем корректируется работа серводвигателя.

Конструкция сервопривода состоит из электромеханического узла, элементы которого располагаются внутри одного корпуса. Сервопривод включает редуктор, электродвигатель, блок управления и датчик.

Основные характеристики сервопривода это рабочее напряжение питания, крутящий момент, частота вращения, материалы и конструктивные, используемый в конкретной модели.

Сервопривод — конструктивные и рабочие особенности

На современных сервоприводах пользуются двумя типами электромоторов с полым ротором и сердечником. Моторы с сердечником располагают ротором с обмоткой, и магнитами постоянного тока размещенными вокруг. Особенность этих электромоторов заключается в возникновении вибраций при вращении маятника, что приводит к снижению точности угловых перемещений.

Моторы, имеющие полый ротор не обладают таким недостатком, но являются более дорогими из-за сложной технологии производства.

Редукторы сервоприводов нужны чтоб понижать частоту вращения и увеличивать крутящий момент выводного вала. Многие редукторы сервоприводов включают цилиндрическую зубчатую передачу, шестерни, изготовленные из полимерных материалов и металла. Для металлических редукторов характерна высокая стоимость, но при этом отличаются прочностью и долговечностью.

В зависимости от того какая требуется точность работы в сервоприводах могут использоваться пластиковые втулки или шарикоподшипники чтобы выставлять выходной вал по отношению к корпусу.

Сервопривод также различается типом используемого управляющего блока, которые бывают аналоговыми и цифровыми. Цифровыми блоками обеспечивается более точное позиционирование основного элемента сервопривода и большая скорость реакции.

Понравилась статья? Поделись с друзьями в соц.сетях!

Сервомоторы (серводвигатели ) представляют собой специализированные электродвигатели, оснащенные так называемой отрицательной обратной связью, с помощью которой осуществляется точное управление всеми параметрами движения. Ее суть состоит в том, что в процессе работы этих устройств происходит постоянное сравнение выходных параметров функционирования с изначально заданными входными. Происходит это на основе управляющих сигналов, генерируемых в режиме реального времени сервоконтроллерами, имеющими в своей конструкции энкодеры, то есть датчики обратной связи.

Таким образом, в конструкцию всех современных сервомоторов входит собственно электродвигатель и управляющий блок. В совокупности они представляют собой сервоприводы, с помощью которых конструкторам технических устройств удается решать целый ряд важных задач. Наиболее часто серводвигатели (сервоприводы) применяются в тех случаях, когда требуется в автоматическом режиме осуществлять точное позиционирование одних рабочих элементов конструкции разнообразного оборудования (например, станков с числовым программным управлением, прессо-штамповочного оборудования, роботизированных сборочных конвейеров и т. п.) относительно других.

Все выпускаемые ведущими мировыми производителями серводвигатели можно разделить на две большие группы: со щетками и без щеток. В сервоприводах могут использоваться как синхронные, так и асинхронные электродвигатели, а также синхронные линейные двигатели. Кроме того, в сервоприводах могут использоваться как корпусные, так и бескорпусные электродвигатели, причем во втором варианте исполнения роль корпуса играет пакет пластин статора, что позволяет максимально эффективно использовать весь их профиль, и при этом существенно уменьшить размеры и вес устройств в целом.

Большинство современных серводвигателей, работающих по принципу обратной связи, управляется сигналами, сформированными энкодером из нескольких системных. Одной из основных особенностей сервосистем является то, что они способны усиливать выходные сигналы, которые изначально, как правило, имеют гораздо меньшую мощность, чем входные (это необходимо для того, чтобы их можно было сравнить). Таким образом, при работе сервосистем их контуры в прямом направлении передают энергию, а в обратном – информацию, требуемую для точного управления.

Основными техническими характеристиками сервомоторов являются их динамика, равномерность движения и энергоэффективность. В последние годы все более широкое применение находят синхронные серводвигатели, которые выгодно отличаются от асинхронных более высокой динамикой, возможностью длительной работы на низких скоростях без принудительного охлаждения и более высокой устойчивостью к перегрузкам. В то же самое время асинхронные двигатели, используемые в сервоприводах, имеют перед синхронными двигателями такое преимущество, как полное отсутствие пульсации при вращении.

Третий компонент аппаратуры управления - сервомашинка. В данной статье мы постараемся объяснить вам, что это за компонент, каково его назначение, устройство и принцип работы сервопривода.

Определение сервопривода

Рулевой сервопривод - устройство с электродвигателем, которое позволяет добиться точного управления форматом движения радиоуправляемой модели путем отрицательной обратной связи. Любой сервопривод в своем устройстве имеет датчик и блок управления, который поддерживает определенные значения на датчике в соответствии с внешним параметром.

Опишем более простым языком, как работает сервопривод:

  • Сервопривод получает импульсный сигнал - управляющее значение, которое определяет угол поворота качалки сервы,
  • Блок управления начинает сравнение поступившего параметра со значением на своем датчике,
  • В зависимости от результата сравнения БУ возвращает сигнал, который предопределяет, какое действие необходимо выполнить: повернуть, ускориться или замедлиться, чтобы сравниваемые показатели стали одинаковыми.

Устройство сервопривода

Большинство современных рулевых машинок построены по одному принципу и состоят из таких составных частей: выходной вал, шестерни редуктора, двигатель постоянного тока, потенциометр, печатная плата и управляющая электроника.

Редуктор вместе с мотором образуют привод. Чтобы трансформировать поступающее напряжение в механический поворот, нужен электродвигатель. Редуктор же - конструкция из шестеренок - преобразует крутящий момент и служит для понижения скорости вращения двигателя, так как часто она настолько большая, что совсем не годится для практического применения.

Вместе с включением и выключением электродвигателя вращается и выходной вал, к которому закрепляется качалка - ее, в свою очередь, крепят к рулю модели. Именно качалка будет задавать движение нашей модели, а для этого в устройстве сервопривода предусмотрен потенциометр - датчик, способный превратить угол поворота обратно в электро-сигнал.

Однако, одним из главных элементов является плата управления, которая представляет собой электронную схему. Именно она получает электрический импульс, анализирует полученный сигнал с данными потенциометра и включает/выключает электродвигатель. Вот как устроен сервопривод и работа его элементов.

Кстати, в качестве мотора в устройстве сервопривода могут использоваться коллекторные, коллекторные Coreless и бесколлекторные двигатели.

Управление сервоприводом. Принцип работы.

Сервопривод получает импульсные сигналы, которые проходят по специальному проводу от приемника. Частота таких сигналов составляет 20мс, а их продолжительность может варьироваться в пределах 0,8-2,2мс. Чтобы у вас появилось четкое представление, как все-таки сигнал трансформируется в перемещение качалки, нужно проанализировать стандартную схему сервы.

где, ГОП - генератор опонного импульса (к нему подсоединен потенциометр), К - компататор, УВХ - устройство выборки-хранения, М - электрический мотор, который охватывается диагональю силового моста.

Теперь разберём более подробно, как работает сервопривод. Итак, импульсный сигнал поступает от ресивера на компататор и в то же время активирует ГОП. Продолжительность опорного импульса связано с положением потенциометра, который соединен с выходным валом физически. Когда качалка находится в средней позиции, длина сигнала составляет 1,5мс, если же положение крайнее - 0,8 или 2,2 мс. Управляющий сигнал и опорный импульс анализируются компататором, который рассчитывает их разностную величину (рассчет ведется по длительности импульсов). Именно длина разностного импульса и определяет насколько «ожидаемое» и «фактическое» состояние руля совпадает. Полученный показатель сохраняется в качестве потенциала в УВХ. Сложно?

Принцип работы сервопривода в разных условиях

Позиция качалки сервы соответствует состоянию стика пульта управления. Продолжительность опорного и управляющего импульсов одинакова. На всех выходах компататоров выставлено значение «0». Двигатель обесточен и качалка удерживает первоначальную позицию.

Пилот меняет положения стика, тем самым увеличивая управляющий импульс. На одном выходе компататора выведется разностный импульс, который будет сохранен в памяти УВХ. В этот момент на двигатель будет подано напряжение, станет вращаться, а вместе с ним и редуктор начнет движение, поворачивая качалку и потенциометр таким образом, чтобы продолжительность опорного импульса увеличивалась. Такие условия продлятся до тех пор, пока длины обоих импульсов не достигну одинаковых значений. Затем двигатель прекратит свое вращение.

Пилот отводит стик пульта в противоположную сторону, уменьшая при этом длину управляющего импульса. Управление сервоприводом на этом этапе схоже с процессом, описанном выше. На нижнем выходе компататора образуется разностный импульс, который запоминается УВХ и подает напряжение на двигатель. Мотор начинает вращаться, но уже в другую сторону, и продолжает работу до того момента, как длины импульсов снова не примут одинаковые значения.

Пилот не взаимодействует с пультом управления. Руль модели начинает поворачивать качалку сервопривода, так как учитывает нагрузку во время хода. Теперь меняется продолжительность опорного импульса, за счет чего разностный импульс посредством компататора и УВХ воздействует на двигатель и осуществляется подача момента на редуктор, что препятствует повороту качалки. Т.е. качалка удерживается в одном положении.

Мы разобрали работу сервопривода в упрощенном варианте. На самом деле существует множество нюансов по настройке и использования девайса, зная которые можно избежать поломок и неприятных ситуаций.

Теперь, зная, как устроен сервопривод, принцип его работы, можно отправляться и выбирать девайс для своей модели. Для этого вам нужно перейти в сайта «Planeta Hobby». Если же у вы не знаете, как правильно подобрать серву для своего самолета или авто, обращайтесь за советом нашего консультанта или читайте эту полезную статью.