Устройство имеет меню. Вход в меню, перемещение в нем и выход осуществляется одновременным нажатием кнопок "Н"и"В". В процессе этого на индикаторе появляется соответствующая мнемоника, "H-U", "B-U" (нижняя и верхняя границы напряжения),"H-I", "B-I" (нижняя и верхняя границы тока), "P-0" , "P-1" - режим ручной или автоматический, включения реле после возврата напряжения или тока в заданные границии. "-З-" сигнализирует о записи установленных параметров в энергонезависимую память и выходе из режима меню. В режиме меню кнопки "Н" и "В" позволяют менять параметры в ту или иную сторону, причем удержание кнопки, около 3-х сек., ускоряет изменение параметра. Изменение происходит по кругу, 99,8-99,9-0,0-0,01 и т.д. При выходе за установленные пределы, происходит отключения реле, индикатор начинает мигать, сигнализируя о аварии. Т.о. устройство позволяет как заряжать, так и разряжать АБ до определенного напряжения. Причем, автоматический режим позволяет держать АБ постоянно заряженной, а ручной, контролировать емкость АБ, в А/часах.

Несколько замечаний. Не забудте запитать 74HC595, 16н.-+5В, 8н.-"земля". На кнопках лучше применять пару резисторов 3К3 и 10К. Полярность индикатора не имеет значения, выбирается резистором на 11 ноге контроллера (как на схеме).

Пример применения для зарада/разряда АБ:

Hex-файл для микроконтроллера PIC16F676, с функциями контроля.
У вас нет доступа к скачиванию файлов с нашего сервера - файл прошивки для вольтампервольтметра с параметрами Umax=99,9В; Imax=9,99A; Pmax=99,9/999 W; Cmax=9,99 A/h.
У вас нет доступа к скачиванию файлов с нашего сервера - hex_файл вольтамперметра с усечёнными функциями, только Umax=99,9В и Imax=9,99A

Один из используемых подходов, позволяющих существенно сократить потери на нагревании силовых компонентов радиосхем, представляет собой использование переключательных режимов работы установок. При подобных системах электросиловой компонент или раскрыт - в это время на нем наблюдается фактически нулевое падение напряжения, или открыт - в это время на него подается нулевой ток. Рассеиваемую мощность можно вычислить, перемножив показатели силы тока и напряжения. В этом режиме получается достичь коэффициента полезного действия около 75-80% и более.

Что такое ШИМ?

Для получения на выходе сигнала требуемой формы силовой ключ должен открываться всего лишь на определенное время, пропорциональное вычисленным показателям выходного напряжения. В этом и заключается принцип широтно-импульсной модуляции (ШИМ, PWM). Далее сигнал такой формы, состоящий из импульсов, разнящихся по своей ширине, поступает в область фильтра на основе дросселя и конденсатора. После преобразования на выходе будет практически идеальный сигнал требуемой формы.

Область применения ШИМ не ограничивается импульсными стабилизаторами и преобразователями напряжения. Использование данного принципа при проектировании мощного усилителя звуковой частоты дает возможность существенно снизить потребление устройством электроэнергии, приводит к миниатюризации схемы и оптимизирует систему теплоотдачи. К недостаткам можно причислить посредственное качество сигнала на выходе.

Формирование ШИМ-сигналов

Создавать ШИМ-сигналы нужной формы достаточно трудно. Тем не менее индустрия сегодня может порадовать замечательными специальными микросхемами, известными как ШИМ-контроллеры. Они недорогие и целиком решают задачу формирования широтно-импульсного сигнала. Сориентироваться в устройстве подобных контроллеров и их использовании поможет ознакомление с их типичной конструкцией.

Стандартная схема контроллера ШИМ предполагает наличие следующих выходов:

  • Общий вывод (GND). Он реализуется в виде ножки, которая подключается к общему проводу схемы питания устройства.
  • Вывод питания (VC). Отвечает за электропитание схемы. Важно не спутать его с соседом с похожим названием - выводом VCC.
  • Вывод контроля питания (VCC). Как правило, чип контроллера ШИМ принимает на себя руководство силовыми транзисторами (биполярными либо полевыми). В случае если напряжение на выходе снизится, транзисторы станут открываться лишь частично, а не целиком. Стремительно нагреваясь, они в скором времени выйдут из строя, не справившись с нагрузкой. Для того чтобы исключить такую возможность, необходимо следить за показателями напряжения питания на входе микросхемы и не допускать превышения расчетной отметки. Если напряжение на данном выводе опускается ниже установленного специально для этого контроллера, управляющее устройство отключается. Как правило, данную ножку соединяют напрямую с выводом VC.

Выходное управляющее напряжение (OUT)

Количество выводов микросхемы определяется её конструкцией и принципом работы. Не всегда удается сразу разобраться в сложных терминах, но попробуем выделить суть. Существуют микросхемы на 2-х выводах, управляющие двухтактными (двухплечевыми) каскадами (примеры: мост, полумост, 2-тактный обратный преобразователь). Существуют и аналоги ШИМ-контроллеров для управления однотактными (одноплечевыми) каскадами (примеры: прямой/обратный, повышающий/понижающий, инвертирующий).

Помимо этого, выходной каскад может быть по строению одно- и двухтактным. Двухтактный используется в основном для управления полевым транзистором, зависящим от напряжения. Для быстрого закрытия необходимо добиться быстрой разрядки емкостей "затвор - исток" и "затвор - сток". Для этого как раз и используется двухтактный выходной каскад контроллера, задачей которого является обеспечение замыкание выхода на общий кабель, если требуется закрыть полевой транзистор.

ШИМ-контроллеры для источников питания большой мощности могут иметь также элементы управления выходным ключом (драйверы). В качестве выходных ключей рекомендуется использовать IGBT-транзисторы.

Основные проблемы ШИМ-преобразователей

При работе любого устройства полностью исключить вероятность поломки невозможно, и преобразователей это тоже касается. Сложность конструкции при этом не имеет значения, проблемы в эксплуатации может вызвать даже известный ШИМ-контроллер TL494. Неисправности имеют различную природу - некоторые из них можно выявить на глаз, а для обнаружения других требуется специальное измерительное оборудование.

Чтобы ШИМ-контроллер, следует ознакомится со списком основных неисправностей приборов, а лишь позже - с вариантами их устранения.

Диагностика неисправностей

Одна из часто встречающихся проблем - пробой ключевых транзисторов. Результаты можно увидеть не только при попытке запуска устройства, но и при его обследовании с помощью мультиметра.

Кроме того, существуют и другие неисправности, которые несколько сложнее обнаружить. Перед тем как проверить ШИМ-контроллер непосредственно, можно рассмотреть самые распространенные случаи поломок. К примеру:

  • Контроллер глохнет после старта - обрыв петли ОС, перепад по току, проблемы с конденсатором на выходе фильтра (если таковой имеется), драйвером; возможно, разладилось управление ШИМ-контроллером. Надо осмотреть устройство на предмет сколов и деформаций, замерить показатели нагрузки и сравнить их с типовыми.
  • ШИМ-контроллер не стартует - отсутствует одно из входных напряжений или устройство неисправно. Может помочь осмотр и замер выходного напряжения, в крайнем случае, замена на заведомо рабочий аналог.
  • Напряжение на выходе отличается от номинального - проблемы с петлей ООС или с контроллером.
  • После старта ШИМ на БП уходит в защиту при отсутствии КЗ на ключах - некорректная работа ШИМ или драйверов.
  • Нестабильная работа платы, наличие странных звуков - обрыв петли ООС или цепочки RC, деградация емкости фильтра.

В заключение

Универсальные и многофункциональные ШИМ-контроллеры сейчас можно встретить практически везде. Они служат не только в качестве неотъемлемой составляющей блоков питания большинства современных устройств - типовых компьютеров и других повседневных девайсов. На основе контроллеров разрабатываются новые технологии, позволяющие существенно сократить расход ресурсов во многих отраслях человеческой деятельности. Владельцам частных домов пригодятся контроллеры заряда аккумуляторов от фотоэлектрических батарей, основанные на принципе широтно-импульсной модуляции тока заряда.

Высокий коэффициент полезного действия делает разработку новых устройств, действие которых основывается на принципе ШИМ, весьма перспективной. Вторичные источники питания - вовсе не единственное направление деятельности.

Создание материнских плат с увеличенным количеством фаз питания процессора постепенно становится своеобразным соревнованием между производителями материнских плат. К примеру, совсем недавно компания Gigabyte производила платы с 12-фазными источниками питания процессоров, но в ныне выпускаемых ею платах количество фаз выросло до 24. Но так ли уж необходимо использовать столь большое количество фаз питания и почему одни производители их постоянно увеличивают, пытаясь при этом аргументированно доказать, что чем больше, тем лучше, а другие довольствуются небольшим количеством фаз питания? Может быть, большое количество фаз питания процессора - это не более чем маркетинговый трюк, призванный привлечь внимание потребителей к своей продукции? В этой статье мы постараемся мотивированно ответить на этот вопрос, а также в деталях рассмотрим принципы работы многофазных импульсных источников питания процессоров и других элементов материнских плат (чипсетов, памяти и т.д.).

Немного истории

Как известно, питание всех компонентов материнских плат (процессора, чипсета, модулей памяти и т.д.) осуществляется от блока питания, который подключается к специальному разъему на материнской плате. Напомним, что на любой современной материнской плате имеется 24-контактный ATX-разъем питания, а также дополнительный 4- (ATX12V) или 8-контактный (EPS12V) разъем питания.

Все блоки питания генерируют постоянное напряжение номиналом ±12, ±5 и +3,3 В, однако понятно, что различные микросхемы материнских плат требуют постоянного напряжения иных номиналов (причем разные микросхемы требуют различного напряжения питания), а потому возникает задача преобразования и стабилизации постоянного напряжения, получаемого от источника питания, в постоянное напряжение, требуемое для питания определенной микросхемы материнской платы (преобразование DC-DC). Для этого в материнских платах используются соответствующие конверторы (преобразователи) напряжения, которые понижают номинальное напряжение источника питания до необходимого значения.

Существует два типа конверторов постоянного напряжения DC-DC: линейный (аналоговый) и импульсный. Линейные конверторы напряжения на материнских платах сегодня уже не встречаются. В этих конверторах понижение напряжения производится за счет падения части напряжения на резистивных элементах и рассеивания части потребляемой мощности в виде тепла. Такие конверторы снабжались мощными радиаторами и сильно грелись. Однако с ростом мощности (а соответственно, и токов), потребляемой компонентами материнских плат, от линейных преобразователей напряжения были вынуждены отказаться, поскольку возникала проблема их охлаждения. Во всех современных материнских платах используются импульсные преобразователи постоянного напряжения, которые нагреваются гораздо меньше по сравнению с линейными.

Понижающий импульсный преобразователь постоянного напряжения для питания процессора часто называют модулем VRM (Voltage Regulation Module - модуль регулирования напряжения) или VRD (Voltage Regulator Down - модуль понижения напряжения). Разница между VRM и VRD заключается в том, что модуль VRD расположен непосредственно на материнской плате, а VRM представляет собой внешний модуль, устанавливаемый в специальный слот на материнской плате. В настоящее время внешние VRM-модули практически не встречаются и все производители применяют VRD-модули. Однако само название VRM так прижилось, что стало общеупотребительным и теперь его используют даже для обозначения VRD-модулей.

Импульсные регуляторы напряжения питания, применяемые для чипсета, памяти и других микросхем материнских плат, не имеют своего специфического названия, однако по принципу действия они ничем не отличаются от VRD. Разница заключается лишь в количестве фаз питания и выходном напряжении.

Как известно, любой преобразователь напряжения характеризуется входным и выходным напряжением питания. Что касается выходного напряжения питания, то оно определяется конкретной микросхемой, для которой используется регулятор напряжения. А вот входное напряжение может быть либо 5, либо 12 В.

Ранее (во времена процессоров Intel Pentium III) для импульсных регуляторов напряжения питания применялось входное напряжение 5 В, однако впоследствии производители материнских плат стали все чаще использовать входное напряжение 12 В, и в настоящее время на всех платах в качестве входного напряжения импульсных регуляторов напряжения применяется напряжение питания 12 В.

Принцип действия однофазного импульсного регулятора напряжения питания

Прежде чем переходить к рассмотрению многофазных импульсных регуляторов напряжения питания, рассмотрим принцип действия простейшего однофазного импульсного регулятора напряжения.

Компоненты импульсного регулятора напряжения питания

Импульсный понижающий преобразователь напряжения питания содержит в своей основе PWM-контроллер (ШИМ-контроллер) - электронный ключ, который управляется PWM-контроллером и периодически подключает и отключает нагрузку к линии входного напряжения, а также индуктивно-емкостной LC-фильтр для сглаживания пульсаций выходного напряжения. PWM - это аббревиатура от Pulse Wide Modulation (широтно-импульсная модуляция, ШИМ). Принцип действия импульсного понижающего преобразователя напряжения следующий. PWM-контроллер создает последовательность управляющих импульсов напряжения. PWM-сигнал представляет собой последовательность прямоугольных импульсов напряжения, которые характеризуются амплитудой, частотой и скважностью (рис. 1).

Рис. 1. PWM-сигнал и его основные характеристики

Скважностью PWM-сигнала называют отношение промежутка времени, в течение которого сигнал имеет высокий уровень, к периоду PWM-сигнала: = /T .

Сигнал, формируемый PWM-контроллером, используется для управления электронным ключом, который периодически, с частотой PWM-сигнала, подключает и отключает нагрузку к линии питания 12 В. Амплитуда PWM-сигнала должна быть такой, чтобы с его помощью можно было управлять электронным ключом.

Соответственно на выходе электронного ключа наблюдается последовательность прямоугольных импульсов с амплитудой 12 В и частотой следования, равной частоте PWM-импульсов. Из курса математики известно, что любой периодический сигнал может быть представлен в виде гармонического ряда (ряда Фурье). В частности, периодическая последовательность прямоугольных импульсов одинаковой длительности при представлении в виде ряда будет иметь постоянную составляющую, обратно пропорциональную скважности импульсов, то есть прямо пропорциональную их длительности. Пропустив полученные импульсы через фильтр низких частот (ФНЧ) с частотой среза, значительно меньшей, чем частота следования импульсов, эту постоянную составляющую можно легко выделить, получив стабильное постоянное напряжение. Поэтому импульсные преобразователи напряжения содержат также низкочастотный фильтр, сглаживающий (выпрямляющий) последовательность прямоугольных импульсов напряжения. Структурная блок-схема такого импульсного понижающего преобразователя напряжения показана на рис. 2.

Рис. 2. Структурная блок-схема такого импульсного понижающего
преобразователя напряжения

Ну а теперь рассмотрим элементы импульсного понижающего преобразователя напряжения питания более подробно.

Электронный ключ и управляющий драйвер

В качестве электронного ключа импульсных преобразователей напряжения питания компонентов материнских плат всегда используется пара полевых n-канальных МОП-транзисторов (MOSFET-транзисторы), соединенных таким образом, что сток одного транзистора подключен к линии питания 12 В, исток этого транзистора соединен с точкой выхода и стоком другого транзистора, а исток второго транзистора заземлен. Транзисторы этого электронного ключа (иногда он называется силовой ключ) работают таким образом, что один из транзисторов всегда находится в открытом состоянии, а другой - в закрытом.

Для управления переключениями MOSFET-транзисторов управляющие сигналы подаются на затворы этих транзисторов. Управляющий сигнал PWM-контроллера используется для того, чтобы переключать MOSFET-транзисторы, однако этот сигнал подается не непосредственно на затворы транзисторов, а через специальную микросхему, называемую драйвером MOSFET-транзисторов или драйвером фазы питания. Данный драйвер управляет переключением MOSFET-транзисторов на частоте, задаваемой PWM-контроллером, подавая требуемые напряжения переключения на затворы транзисторов.

Когда транзистор, подключенный к линии питания 12 В, открыт, второй транзистор, соединенный через свой сток с истоком первого транзистора, закрыт. В этом случае линия питания 12 В оказывается подключенной к нагрузке через сглаживающий фильтр. Когда транзистор, подключенный к линии питания 12 В, закрыт, второй транзистор открыт и линия питания 12 В оказывается отключенной от нагрузки, но нагрузка в этот момент соединена через сглаживающий фильтр с землей.

Низкочастотный LC-фильтр

Сглаживающий, или низкочастотный, фильтр представляет собой LC-фильтр, то есть индуктивность, включенную последовательно с нагрузкой, и емкость, включенную параллельно нагрузке (рис. 3).

Рис. 3. Схема однофазного импульсного преобразователя напряжения

Как известно из курса физики, если на вход такого LC-фильтра подать гармонический сигнал определенной частоты U вх (f) , то напряжение на выходе фильтра U вых (f) зависит от реактивных сопротивлений индуктивности (Z L = j2 fC) и конденсатора Z c = 1/(j2 fC) . Коэффициент передачи такого фильтра K(f) = (U вых (f))/(U вх (f)) можно рассчитать, рассматривая делитель напряжения, образованный частотно-зависимыми сопротивлениями. Для ненагруженного фильтра получим:

K(f) = Z c /(Z c + Z L) = 1/(1 – (2 f) 2 LC)

Или, если ввести обозначение f0 = 2 /, то получим:

K(f) = 1/(1 – (f/f0) 2)

Из данной формулы видно, что коэффициент передачи ненагруженного идеального LC-фильтра неограниченно растет с приближением к частоте f0 , а затем, при f>f 0 , убывает пропорционально 1/f 2 . На низких частотах (f коэффициент передачи близок к единице, а на высоких (f>f 0) - к нулю. Поэтому частоту f 0 называют частотой среза фильтра.

Как уже отмечалось, сглаживание импульсов напряжения с помощью LC-фильтра необходимо, чтобы частота среза фильтра f 0 = 2 / была значительно меньшей, чем частота следования импульсов напряжения. Данное условие позволяет подобрать необходимые емкость и индуктивность фильтра. Впрочем, отвлечемся от формул и попытаемся объяснить принцип действия фильтра на более простом языке.

В тот момент, когда силовой ключ открыт (транзистор Т 1 открыт, транзистор Т 2 закрыт), энергия от входного источника передается в нагрузку через индуктивность L , в котором при этом накапливается энергия. Ток, протекающий при этом по цепи, изменяется не мгновенно, а постепенно, поскольку возникающая в индуктивности ЭДС препятствует изменению тока. Одновременно с этим заряжается и конденсатор, установленный параллельно нагрузке.

После того как силовой ключ закрывается (транзистор Т 1 закрыт, транзистор Т 2 открыт), ток от линии входного напряжения не поступает в индуктивность, но по законам физики возникающая ЭДС индукции поддерживает прежнее направление тока. То есть в этот период ток в нагрузку поступает от индуктивного элемента. Для того чтобы цепь замкнулась и ток пошел на сглаживающий конденсатор и в нагрузку, открывается транзистор T 2 , обеспечивая замкнутую цепь и протекание тока по пути индуктивность - емкость и нагрузка - транзистор T 2 - индуктивность.

Как уже отмечалось, с помощью такого сглаживающего фильтра можно получить напряжение на нагрузке, пропорциональное скважности управляющих PWM-импульсов. Однако понятно, что при таком способе сглаживания выходное напряжение будет иметь пульсации напряжения питания относительного некоторого среднего значения (выходного напряжения) - рис. 4. Величина пульсаций напряжения на выходе зависит от частоты переключения транзисторов, значения емкости и индуктивности.

Рис. 4. Пульсации напряжения после сглаживания LC-фильтром

Стабилизация выходного напряжения и функции PWM-контроллера

Как уже отмечалось, выходное напряжение зависит (при заданной нагрузке, частоте, индуктивности и емкости) от скважности PWM-импульсов. Поскольку ток через нагрузку динамически изменяется, возникает задача стабилизации выходного напряжения. Делается это следующим образом. PWM-контроллер, формирующий сигналы переключения транзисторов, связан с нагрузкой петлей обратной связи и постоянно отслеживает выходное напряжение на нагрузке. Внутри PWM-контроллера генерируется референсное напряжение питания, которое должно быть на нагрузке. PWM-контроллер постоянно сравнивает выходное напряжение с референсным, и если возникает рассогласование U , то данный сигнал рассогласования используется для изменения (корректировки) скважности PWM-импульсов, то есть изменение скважности импульсов ~ U . Таким образом реализуется стабилизация выходного напряжения.

Естественно, возникает вопрос: каким образом PWM-контроллер узнает о требуемом напряжении питания? К примеру, если говорить о процессорах, то, как известно, напряжение питания разных моделей процессора может быть различным. Кроме того, даже для одного и того же процессора напряжение питания может динамически изменяться в зависимости от его текущей загрузки.

О требуемом номинальном напряжении питания PWM-контроллер узнает по сигналу VID (Voltage Identifier). Для современных процессоров Intel Core i7, поддерживающих спецификацию питания VR 11.1, сигнал VID является 8-битным, а для устаревших процессоров, совместимых со спецификацией VR 10.0, сигнал VID был 6-битным. 8-битный сигнал VID (комбинация 0 и 1) позволяет задать 256 различных уровней напряжения процессора.

Ограничения однофазного импульсного регулятора напряжения питания

Рассмотренная нами однофазная схема импульсного регулятора напряжения питания проста в исполнении, однако имеет ряд ограничений и недостатков.

Если говорить об ограничении однофазного импульсного регулятора напряжения питания, то оно заключается в том, что и MOSFET-транзисторы, и индуктивности (дроссели), и емкости имеют ограничение по максимальном току, который через них можно пропускать. К примеру, для большинства MOSFET-транзисторов, которые используются в регуляторах напряжения материнских плат, ограничение по току составляет 30 A. В то же время сами процессоры при напряжении питания порядка 1 В и энергопотреблении свыше 100 Вт потребляют ток свыше 100 A. Понятно, что если при такой силе тока использовать однофазный регулятор напряжения питания, то его элементы просто «сгорят».

Если говорить о недостатке однофазного импульсного регулятора напряжения питания, то он заключается в том, что выходное напряжение питания имеет пульсации, что крайне нежелательно.

Для того чтобы преодолеть ограничения по току импульсных регуляторов напряжения, а также минимизировать пульсации выходного напряжения, используются многофазные импульсные регуляторы напряжения.

Многофазные импульсные регуляторы напряжения

В многофазных импульсных регуляторах напряжения каждая фаза образована драйвером управления переключениями MOSFET-транзисторов, парой самих MOSFET-транзисторов и сглаживающим LC-фильтром. При этом используется один многоканальный PWM-контроллер, к которому параллельно подключается несколько фаз питания (рис. 5).

Рис. 5. Структурная схема многофазного импульсного регулятора напряжения питания

Применение N-фазного регулятора напряжения питания позволяет распределить ток по всем фазам, а следовательно, ток, протекающий по каждой фазе, будет в N раз меньше тока нагрузки (в частности, процессора). К примеру, если использовать 4-фазный регулятор напряжения питания процессора с ограничением по току в каждой фазе 30 A, то максимальный ток через процессор составит 120 A, чего вполне достаточно для большинства современных процессоров. Однако если используются процессоры с TDP 130 Вт или предполагается возможность разгона процессора, то желательно применять не 4-фазный, а 6-фазный импульсный регулятор напряжения питания процессора или же использовать в каждой фазе питания дроссели, конденсаторы и MOSFET-транзисторы, рассчитанные на больший ток.

Для уменьшения пульсации выходного напряжения в многофазных регуляторах напряжения все фазы работают синхронно с временны м сдвигом друг относительно друга. Если T - это период переключения MOSFET-транзисторов (период PWM-сигнала) и используется N фаз, то временной сдвиг по каждой фазе составит T/N (рис. 6). За синхронизацию PWM-сигналов по каждой фазе с временным сдвигом отвечает PWM-контроллер.

Рис. 6. Временные сдвиги PWM-сигналов в многофазном регуляторе напряжения

В результате того, что все фазы работают с временны м сдвигом друг относительно друга, пульсации выходного напряжения и тока по каждой фазе также будут сдвинуты по временной оси друг относительно друга. Суммарный ток, проходящий по нагрузке, будет складываться из токов по каждой фазе, и пульсации результирующего тока окажутся меньше, чем пульсации тока по каждой фазе (рис. 7).

Рис. 7. Ток по каждой фазе
и результирующий ток нагрузки
в трехфазном регуляторе напряжения

Итак, основное преимущество многофазных импульсных регуляторов напряжения питания заключается в том, что они позволяют, во-первых, преодолеть ограничение по току, а во-вторых, снизить пульсации выходного напряжения при той же емкости и индуктивности сглаживающего фильтра.

Дискретные многофазные схемы регуляторов напряжения и технология DrMOS

Как мы уже отмечали, каждая фаза питания образована управляющим драйвером, двумя MOSFET-транзисторами, дросселем и конденсатором. При этом один PWM-контроллер одновременно управляет несколькими фазами питания. Конструктивно на материнских платах все компоненты фазы могут быть дискретными, то есть имеется отдельная микросхема драйвера, два отдельных MOSFET-транзистора, отдельный дроссель и емкость. Такой дискретный подход используется большинством производителей материнских плат (ASUS, Gigabyte, ECS, AsRock и т.д.). Однако есть и несколько иной подход, когда вместо применения отдельной микросхемы драйвера и двух MOSFET-транзисторов используется одна микросхема, объединяющая и силовые транзисторы, и драйвер. Данная технология была разработана компанией Intel и получила название DrMOS, которое буквально означает Driver + MOSFETs. Естественно, что при этом также применяются отдельные дроссели и конденсаторы, а для управления всеми фазами служит многоканальный PWM-контроллер.

В настоящее время технология DrMOS используется только на материнских платах MSI. Говорить о преимуществах технологии DrMOS в сравнении с традиционным дискретным способом организации фаз питания довольно сложно. Здесь, скорее, все зависит от конкретной DrMOS-микросхемы и ее характеристик. К примеру, если говорить о новых платах MSI для процессоров семейства Intel Core i7, то в них применяется DrMOS-микросхема Renesas R2J20602 (рис. 8). Например, на плате MSI Eclipse Plus используется 6-фазный регулятор напряжения питания процессора (рис. 9) на базе 6-канального PWM-контроллера Intersil ISL6336A (рис. 10) и DrMOS-микросхем Renesas R2J20602.

Рис. 8. DrMOS-микросхема Renesas R2J20602

Рис. 9. Шестифазный регулятор напряжения питания процессора
на базе 6-канального PWM-контроллера Intersil ISL6336A
и DrMOS-микросхем Renesas R2J20602 на плате MSI Eclipse Plus

Рис. 10. Шестиканальный PWM-контроллер
Intersil ISL6336A

DrMOS-микросхема Renesas R2J20602 поддерживает частоту переключения MOSFET-транзисторов до 2 МГц и отличается очень высоким КПД. При входном напряжении 12 В, выходном 1,3 В и частоте переключения 1 МГц ее КПД составляет 89%. Ограничение по току - 40 А. Понятно, что при шестифазной схеме питания процессора обеспечивается как минимум двукратный запас по току для DrMOS-микросхемы. При реальном значении тока в 25 А энергопотребление (выделяющееся в виде тепла) самой микросхемы DrMOS составляет всего 4,4 Вт. Также становится очевидным, что при использовании DrMOS-микросхем Renesas R2J20602 нет необходимости применять более шести фаз в регуляторах напряжения питания процессора.

Компания Intel в своей материнской плате Intel DX58S0 на базе чипсета Intel X58 для процессоров Intel Core i7 также использует 6-фазный, но дискретный регулятор напряжения питания процессора. Для управления фазами питания применяется 6-канальный PWM-контроллер ADP4000 от компании On Semiconductor, а в качестве MOSFET-драйверов - микросхемы ADP3121 (рис. 11). PWM-контроллер ADP4000 поддерживает интерфейс PMBus (Power Manager Bus) и возможность программирования на работу в режиме 1, 2, 3, 4, 5 и 6 фаз с возможностью переключения числа фаз в режиме реального времени. Кроме того, с помощью интерфейса PMBus можно считывать текущие значения тока процессора, его напряжения и потребляемой мощности. Остается лишь сожалеть, что компания Intel не реализовала эти возможности чипа ADP4000 в утилите мониторинга состояния процессора.

Рис. 11. Шестифазный регулятор напряжения питания процессора
на базе PWM-контроллера ADP4000 и MOSFET-драйверов ADP3121
на плате Intel DX58S0 (показаны две фазы питания)

Отметим также, что в каждой фазе питания применяются силовые MOSFET-транзисторы NTMFS4834N компании On Semiconductor с ограничением по току в 130 A. Нетрудно догадаться, что при таких ограничениях по току сами по себе силовые транзисторы не являются узким местом фазы питания. В данном случае ограничение по току на фазу питания налагает дроссель. В рассматриваемой схеме регулятора напряжения используются дроссели PA2080.161NL компании PULSE с ограничением по току 40 A, но понятно, что даже при таком ограничении по току вполне достаточно шести фаз питания процессора и имеется большой запас для экстремального разгона процессора.

Технология динамического переключения фаз

Практически все производители материнских плат в настоящее время используют технологию динамического переключения числа фаз питания процессора (речь идет о платах для процессоров Intel). Собственно, данная технология отнюдь не нова и была разработана компанией Intel уже достаточно давно. Однако, как это часто бывает, появившись, данная технология оказалась невостребованной рынком и долгое время лежала в «запасниках». И только когда идея снижения энергопотребления компьютеров овладела умами разработчиков, вспомнили о динамическом переключении фаз питания процессора. Производители материнских плат пытаются выдать эту технологию за свою фирменную и придумывают ей различные названия. К примеру, у компании Gigabyte она называется Advanced Energy Saver (AES), у ASRock - Intelligent Energy Saver (IES), у ASUS - EPU, у MSI - Active Phase Switching (APS). Однако, несмотря на разнообразие названий, все эти технологии реализованы абсолютно одинаково и, конечно же, не являются фирменными. Более того, возможность переключения фаз питания процессора заложена в спецификацию Intel VR 11.1 и все PWM-контроллеры, совместимые со спецификацией VR 11.1, поддерживают ее. Собственно, у производителей материнских плат выбор здесь небольшой. Это либо PWM-контроллеры компании Intersil (например, 6-канальный PWM-контроллер Intersil ISL6336A), либо PWM-контроллеры компании On Semiconductor (например, 6-канальный PWM-контроллер ADP4000). Контроллеры других компаний применяются реже. Контроллеры и Intersil, и On Semiconductor, совместимые со спецификацией VR 11.1, поддерживают динамическое переключение фаз питания. Вопрос лишь в том, как производитель материнской платы использует возможности PWM-контроллера.

Естественно, возникает вопрос: почему технологию динамического переключения фаз питания называют энергосберегающей и какова эффективность ее применения?

Рассмотрим, к примеру, материнскую плату с 6-фазным регулятором напряжения питания процессора. Если процессор загружен несильно, а значит, потребляемый им ток невелик, вполне можно обойтись двумя фазами питания, а потребность в шести фазах возникает при сильной загрузке процессора, когда потребляемый им ток достигает максимального значения. Действительно, можно сделать так, чтобы количество задействованных фаз питания соответствовало потребляемому процессором току, то есть чтобы фазы питания динамически переключались в зависимости от загрузки процессора. Но не проще ли использовать все шесть фаз питания при любом токе процессора? Чтобы ответить на этот вопрос, нужно учесть, что любой регулятор напряжения сам потребляет часть преобразуемой им электроэнергии, которая выделяется в виде тепла. Поэтому одной из характеристик преобразователя напряжения является его КПД, или энергоэффективность, то есть отношение передаваемой мощности в нагрузку (в процессор) к потребляемой регулятором мощности, которая складывается из мощности, потребляемой нагрузкой, и мощности, потребляемой самим регулятором. Энергоэффективность регулятора напряжения зависит от текущего значения тока процессора (его загрузки) и количества задействованных фаз питания (рис. 12).

Рис. 12. Зависимость энергоэффективности (КПД) регулятора напряжения
от тока процессора при различном количестве фаз питания

Зависимость энергоэффективности регулятора напряжения от тока процессора при неизменном количестве фаз питания выглядит следующим образом. Первоначально, с ростом тока нагрузки (процессора), КПД регулятора напряжения линейно возрастает. Далее достигается максимальное значение КПД, а при дальнейшем увеличении тока нагрузки КПД постепенно уменьшается. Главное, что значение тока нагрузки, при котором достигается максимальное значение КПД, зависит от количества фаз питания, а следовательно, если использовать технологию динамического переключения фаз питания, то КПД регулятора напряжения питания всегда можно поддерживать на максимально высоком уровне.

Сравнивая зависимости энергоэффективности регулятора напряжения от тока процессора для различного количества фаз питания, можно сделать вывод: при малом токе процессора (при незначительной загрузке процессора) более эффективно задействовать меньшее количество фаз питания. В этом случае меньше энергии будет потребляться самим регулятором напряжения и выделяться в виде тепла. При высоких значениях тока процессора использование малого количества фаз питания приводит к снижению энергоэффективности регулятора напряжения. Поэтому в данном случае оптимально применять большее количество фаз питания.

С теоретической точки зрения использование технологии динамического переключения фаз питания процессора должно, во-первых, снизить общее энергопотребление системы, а во-вторых - тепловыделение на самом регуляторе напряжения питания. Причем, по заявлениям производителей материнских плат, данная технология позволяет снизить энергопотребление системы на целых 30%. Конечно же, 30% - это число, взятое с потолка. Реально технология динамического переключения фаз питания позволяет снизить суммарное энергопотребление системы не более чем на 3-5%. Дело в том, что данная технология позволяет экономить электроэнергию, потребляемую лишь самим регулятором напряжения питания. Однако основными потребителями электроэнергии в компьютере являются процессор, видеокарта, чипсет и память, и на фоне суммарного энергопотребления этих компонентов энергопотребление самого регулятора напряжения достаточно мало. А потому, как ни оптимизируй энергопотребление регулятора напряжения, добиться существенной экономии просто невозможно.

Маркетинговые «фишки» производителей

На что только не идут производители материнских плат, дабы привлечь к своей продукции внимание покупателей и мотивированно доказать, что она лучше, чем у конкурентов! Одна из таких маркетинговых «фишек» - увеличение фаз питания регулятора напряжения питания процессора. Если раньше на топовых материнских платах применялись шестифазные регуляторы напряжения, то сейчас используют 10, 12, 16, 18 и даже 24 фазы. Действительно ли нужно так много фаз питания, или это не более чем маркетинговый трюк?

Конечно, многофазные регуляторы напряжения питания имеют свои неоспоримые преимущества, но всему есть разумный предел. К примеру, как мы уже отмечали, большое количество фаз питания позволяет использовать в каждой фазе питания компоненты (MOSFET-транзисторы, дроссели и емкости), рассчитанные на низкий ток, которые, естественно, дешевле компонентов с высоким ограничением по току. Однако сейчас все производители материнских плат применяют твердотельные полимерные конденсаторы и дроссели с ферритовым сердечником, которые имеют ограничение по току не менее 40 A. MOSFET-транзисторы также имеют ограничение по току не ниже 40 A (а в последнее время наблюдается тенденция перехода на MOSFET-транзисторы с ограничением по току в 75 А). Понятно, что при таких ограничениях по току на каждой фазе волне достаточно применять шесть фаз питания. Такой регулятор напряжения теоретически способен обеспечить ток процессора более 200 А, а следовательно, энергопотребление более 200 Вт. Понятно, что даже в режиме экстремального разгона достичь таких значений тока и энергопотребления практически невозможно. Так зачем же производители делают регуляторы напряжения с 12 фазами и более, если питание процессора в любом режиме его работы способен обеспечить и шестифазный регулятор напряжения?

Если сравнивать 6- и 12-фазный регуляторы напряжения, то теоретически при использовании технологии динамического переключения фаз питания энергоэффективность 12-фазного регулятора напряжения будет выше. Однако разница в энергоэффективности будет наблюдаться только при высоких токах процессора, которые на практике недостижимы. Но даже если и удается достичь столь высокого значения тока, при котором будет различаться энергоэффективность 6- и 12-фазного регуляторов напряжения, то эта разница будет столь мала, что ее можно не принимать в расчет. Поэтому для всех современных процессоров с энергопотреблением 130 Вт даже в режиме их экстремального разгона волне достаточно 6-фазного регулятора напряжения. Применение 12-фазного регулятора напряжения не дает никаких преимуществ даже при использовании технологии динамического переключения фаз питания. Зачем же производители начали делать 24-фазные регуляторы напряжения - остается только гадать. Здравого смысла в этом нет, видимо, они рассчитывают произвести впечатление на технически неграмотных пользователей, для которых «чем больше, тем лучше».

Кстати, нелишне будет отметить, что сегодня не производится 12- и тем более 24-канальных PWM-контроллеров, управляющих фазами питания. Максимальное количество каналов в PWM-контроллерах равно шести. Следовательно, когда применяются регуляторы напряжения с количеством фаз более шести, производители вынуждены устанавливать несколько PWM-контроллеров, которые работают синхронно. Напомним, что управляющий PWM-сигнал в каждом канале имеет определенную задержку относительно PWM-сигнала в другом канале, но эти временные смещения сигналов реализуются в пределах одного контроллера. Получается, что при применении, к примеру, двух 6-канальных PWM-контроллеров для организации 12-фазного регулятора напряжения фазы питания, управляемые одним контроллером, попарно объединены с фазами питания, управляемыми другим контроллером. То есть первая фаза питания первого контроллера будет работать синхронно (без временного сдвига) с первой фазой питания второго контроллера. Динамически переключаться фазы будут, скорее всего, тоже попарно. В общем, получается не «честный» 12-фазный регулятор напряжения, а скорее гибридная версия 6-фазного регулятора с двумя каналами в каждой фазе.

Отличительные особенности:

  • Наименьший сдвоенный повышающий преобразователь: 16-выв. QSOP
  • К.п.д. 90%
  • Старт при питании напряжением 1.5В
  • Максимальный общий потребляемый ток 85 мкА
  • Потребляемый ток в режиме выключения 1 мкА
  • Раздельные входы выключения
  • Управляет двумя N-канальными МОП-транзисторами для поверхностного монтажа
  • Вход и выход компаратора определения разряда батареи
  • Возможность использования как повышающего и как понижающего преобразователя

Области применения:

  • Портативное оборудование с 2- и 3-х элементным питанием
  • Органайзеры
  • Электронные переводчики
  • Портативные, переносные контрольно-измерительные приборы
  • Портативные компьютеры
  • Персональные цифровые помощники (PDA)
  • Источники двойного питания (питание логики и ЖКИ)

Типовая схема включения:

Расположение выводов:

Описание выводов:

SENSE1 Вход обратной связи преобразователя 1 в режиме фиксированного выходного напряжения
VDD Вход напряжения питания
BOOT Вход разрешения работы генератора повышения напряжения для запуска при 1.5 В питания
FB1, FB2 Входы обратной связи и выбора предустановленных напряжений
EXT1, EXT2 Выходы драйверов
PGND Сильноточный общий
GND Общий
CS1, CS2 Входы компараторов контроля тока
SHDN1, SHDN2 Входы перевода в режим выключения
LBI Вход компаратора контроля разряда батареи (порог 1.25В)
REF Выход опорного напряжения
LBO Выход компаратора контроля разряда батареи

Описание:

MAX863 - преобразователь постоянного напряжения с двумя выходами, который содержит два независимых повышающих контроллера в одном компактном корпусе. ИМС выполнена по технологии Bi-CMOS и потребляет всего 85 мкА при работе обеих контроллеров. Минимальное входное напряжение питания составляет 1.5В, что позволяет использовать данную ИМС в органайзерах, переводчиках и другом маломощном портативном оборудовании. MAX863 обеспечивает к.п.д. преобразования 90% при токе нагрузке от 20 мА до 1А. Данная малогабаритная ИМС выпускается в 16-выв. корпусе QSOP, который занимает те же размеры, что и 8-выв. корпус SOIC.

ИМС использует архитектуру частотно-импульсной модуляции с ограничением тока, которая характеризуется небольшими выбросами тока при запуске и малым током потребления, тем самым обеспечивая высокий к.п.д. преобразования в широком диапазоне нагружения. Каждый контроллер управляет недорогим, внешним, N-канальным МОП-транзистором, размер которого оптимизирован для любых выходных токов и напряжений.

В более мощных системах два MAX863 могут использоваться для генерации напряжений 5В, 3.3В, 12В и 28В, используя при этом в качестве источника питания всего два или три элемента питания. Для ускорения сроков проектирования выпускается оценочный набор MAX863EVKIT. Если требуется контроллер с одним выходом, то см. документацию на MAX608 и MAX1771.

Этим уроком я начинаю серию статей посвященных импульсным стабилизаторам, цифровым регуляторам, устройствам управления выходной мощностью.

Цель, которую я поставил это разработка контроллера для холодильника на элементе Пельтье.

Будем делать аналог моей разработки , только реализованный на основе платы Ардуино.

  • Эта разработка многих заинтересовала, и мне посыпались письма с просьбами реализовать ее на Ардуино.
  • Разработка идеально подходит для изучения аппаратной и программной части цифровых регуляторов. К тому же она объединяет в себе множество задач, изученных в предыдущих уроках:
    • измерение аналоговых сигналов;
    • работа с кнопками;
    • подключение систем индикации;
    • измерение температуры;
    • работа с EEPROM;
    • связь с компьютером;
    • параллельные процессы;
    • и многое другое.

Разработку я буду вести последовательно, шаг за шагом, поясняя свои действия. Что в результате получится – не знаю. Надеюсь на полноценный рабочий проект контроллера холодильника.

У меня нет готового проекта. Уроки я буду писать по текущему состоянию, поэтому в ходе испытаний может выясниться, что на каком-то этапе я ошибся. Буду исправлять. Это лучше, чем я отлажу разработку и выдам готовые решения.

Отличия разработки от прототипа.

Единственное функциональное отличие от прототипа разработки на PIC-контроллере – это отсутствие быстрого стабилизатора напряжения, который компенсирует пульсации питающего напряжения.

Т.е. данный вариант устройства должен питаться от стабилизированного источника питания с низким уровнем пульсаций (не более 5%). Этим требованиям отвечают все современные импульсные блоки питания.

А вариант питания от нестабилизированного блока питания (трансформатор, выпрямитель, емкостной фильтр) исключен. Быстродействие системы Ардуино не позволяет реализовать быстрый регулятор напряжения. Рекомендую прочитать о требованиях к питанию элемента Пельтье.

Разработка общей структуры устройства.

На этом этапе надо в общем виде понять:

Я представляю контроллер “черным ящиком” или “мусорной ямой” и подключаю к нему все что надо. Потом смотрю, подходит ли для этих целей, например, плата Arduino UNO R3.

В моей интерпретации это выглядит так.

Я нарисовал прямоугольник – контроллер и все сигналы, необходимые для подключения элементов системы.

Я решил, что необходимо подключить к плате:

  • LCD индикатор (для отображения результатов и режимов);
  • 3 кнопки (для управления);
  • светодиод индикации ошибки;
  • ключ управления вентилятором (для включения вентилятора радиатора горячей стороны);
  • ключ импульсного стабилизатора (для регулировки мощности элемента Пельтье);
  • аналоговый вход измерения тока нагрузки;
  • аналоговый вход измерения напряжения нагрузки;
  • датчик температуры в камере (точный 1-wire датчик DS18B20);
  • датчик температуры радиатора (еще не решил, какой датчик, скорее тоже DS18B20);
  • сигналы связи с компьютером.

Всего получилось 18 сигналов. У платы Arduino UNO R3 или Arduino NANO 20 выводов. Осталось еще 2 вывода про запас. Может, захочется еще одну кнопку подключить, или светодиод, или датчик влажности, или вентилятор холодной стороны… Нам требуется 2 или 3 аналоговых входа, у платы – 6. Т.е. все нас устраивает.

Можно назначить номера выводов сразу, можно в ходе разработки. Я назначил сразу. Подключение происходит через разъемы, всегда можно изменить. Имейте в виду, что назначение выводов неокончательное.

Импульсные стабилизаторы.

Для точной стабилизации температуры и работы элемента Пельтье в оптимальном режиме необходимо регулировать мощность на нем. Регуляторы бывают аналоговые (линейные) и импульсные (ключевые).

Аналоговые регуляторы представляют собой последовательно подключенные к источнику питания регулирующий элемент и нагрузку. За счет изменения сопротивления регулирующего элемента происходит регулировка напряжения или тока на нагрузке. В качестве регулирующего элемента, как правило, используется биполярный транзистор.

Регулирующий элемент работает в линейном режиме. На нем выделяется “лишняя” мощность. При больших токах стабилизаторы такого типа сильно греются, имеют небольшой КПД. Типичным линейным стабилизатором напряжения является микросхема 7805.

Нам такой вариант не подходит. Будем делать импульсный (ключевой) стабилизатор.

Импульсные стабилизаторы бывают разные. Нам нужен понижающий импульсный регулятор. Напряжение на нагрузке в таких устройствах всегда ниже напряжения питания. Схема понижающего импульсного регулятора выглядит так.

А это диаграмма работы регулятора.

Транзистор VT работает в ключевом режиме, т.е. у него может быть только два состояния: открыт или закрыт. Устройство управления, в нашем случае микроконтроллер, коммутирует транзистор с определенной частотой и скважностью.

  • Когда транзистор открыт ток течет по цепи: источник питания, транзисторный ключ VT, дроссель L, нагрузка.
  • При разомкнутом ключе энергия, накопленная в дросселе, поступает в нагрузку. Ток течет по цепи: дроссель, диод VD, нагрузка.

Таким образом, постоянное напряжение на выходе регулятора зависит от соотношения времени открытого (tоткр) и закрытого ключа (tзакр), т.е. от скважности импульсов управления. Меняя скважность, микроконтроллер может менять напряжение на нагрузке. Конденсатор C сглаживает пульсации выходного напряжения.

Главное достоинство такого способа регулирования – высокий КПД. Транзистор всегда находится в открытом или закрытом состоянии. Поэтому на нем рассеивается небольшая мощность - всегда или напряжение на транзисторе близко к нулю, или ток равен 0.

Это классическая схема импульсного понижающего регулятора. В ней ключевой транзистор оторван от общего провода. Транзистором тяжело управлять, требуются специальные цепи смещения к шине напряжения питания.

Поэтому я изменил схему. В ней нагрузка оторвана от общего провода, зато к общему проводу привязан ключ. Такое решение позволяет управлять транзисторным ключом от сигнала микроконтроллера, используя простой драйвер-усилитель тока.

  • При замкнутом ключе ток поступает в нагрузку по цепи: источник питания, дроссель L, ключ VT (путь тока показан красным цветом).
  • При разомкнутом ключе энергия, накопленная в дросселе возвращается в нагрузку через рекуперативный диод VD (путь тока показан синим цветом).

Практическая реализация ключевого регулятора.

Нам необходимо реализовать узел импульсного регулятора со следующими функциями:

  • собственно ключевой регулятор (ключ, дроссель, рекуперативный диод, сглаживающий конденсатор);
  • цепь измерения напряжения на нагрузке;
  • цепь измерения тока регулятора;
  • аппаратная защита от превышения тока.

Я, практически без изменений, взял схему регулятора из .

Схема импульсного регулятора для работы с платой Ардуино.

В качестве силового ключа я использовал MOSFET транзисторы IRF7313. В статье об увеличении мощности контроллера элемента Пельтье я подробно писал об этих транзисторах, о возможной замене и о требованиях к ключевым транзисторам для этой схеме. Вот ссылка на техническую документацию .

На транзисторах VT1 и VT2 собран драйвер ключевого MOSFET транзистора. Это просто усилитель по току, по напряжению он даже ослабляет сигнал примерно до 4,3 В. Поэтому ключевой транзистор обязательно должен быть низкопороговым. Есть разные варианты реализации драйверов MOSFET транзисторов. В том числе и с использованием интегральных драйверов. Этот вариант самый простой и дешевый.

Для измерения напряжения на нагрузке используется делитель R1, R2. При таких значениях сопротивлений резисторов и источнике опорного напряжения 1,1 В, диапазон измерения составляет 0 … 17,2 В. Цепь позволяет измерить напряжение на втором выводе нагрузки относительно общего провода. Напряжение на нагрузке мы вычислим, зная напряжение источника питания:

Uнагрузки = Uпитания – Uизмеренное.

Понятно, что точность измерения будет зависеть от стабильности поддержания напряжения источника питания. Но нам не нужна высокая точность измерения напряжения, тока, мощности нагрузки. Нам нужно точно измерять и поддерживать только температуру. Ее мы и будем измерять с высокой точностью. А если система покажет, что на элементе Пельтье установлена мощность 10 Вт, а на самом деле будет 10,5 Вт, это ни как не отразится на работе устройства. Это касается всех остальных энергетических параметров.

Ток измеряется с помощью резистора-датчика тока R8. Компоненты R6 и C2 образуют простой фильтр низких частот.

На элементах R7 и VT3 собрана простейшая аппаратная защита. Если ток в цепи превысит 12 А, то на резисторе R8 напряжение достигнет порога открывания транзистора 0,6 В. Транзистор откроется и замкнет вывод RES (сброс) микроконтроллера на землю. Все должно отключится. К сожалению, порог срабатывания такой защиты определяется напряжением база-эммитер биполярного транзистора (0,6 В). Из-за этого защита срабатывает только при значительных токах. Можно применить аналоговый компаратор, но это усложнит схему.

Ток будет измеряться точнее при увеличении сопротивления датчика тока R8. Но это приведет к выделению на нем значительной мощности. Даже при сопротивлении 0,05 Ом и токе 5 А на резисторе R8 рассеивается 5 * 5 * 0,05 = 1,25 Вт. Обратите внимание, что резистор R8 имеет мощность 2 Вт.

Теперь, какой ток мы измеряем. Мы измеряем ток потребления импульсного стабилизатора от источника питания. Схема измерения этого параметра гораздо проще, чем схема измерения тока нагрузки. Нагрузка у нас “отвязана” от общего провода. Для работы системы необходимо измерять электрическую мощность на элементе Пельтье. Мы вычислим мощность потребляемую регулятором, умножив напряжение источника питания на потребляемый ток. Посчитаем, что наш регулятор имеет КПД 100% и решим, что это и есть мощность на элементе Пельтье. На самом деле КПД регулятора будет 90-95%, но эта погрешность никак не скажется на работе системы.

Компоненты L2, L3, C5 – простой фильтр радиопомех. Возможно, в нем нет необходимости.

Расчет дросселя ключевого стабилизатора.

Дроссель имеет два параметра, важных для нас:

  • индуктивность;
  • ток насыщения.

Необходимая индуктивность дросселя определяется частотой ШИМ и допустимыми пульсациями тока дросселя. На эту тему есть очень много информации. Я приведу самый упрощенный расчет.

Мы подали на дроссель напряжение и ток через него начал увеличиваться ток. Увеличиваться, а не появился, потому что какой-то ток уже протекал через дроссель в момент включения Iвкл).


Транзистор открылся. К дросселю подключили напряжение:

Uдросселя = Uпитания – Uнагрузки.

Ток через дроссель начал нарастать по закону:

Iдросселя = Uдросселя * tоткр / L

Т.е. значение пульсации тока дросселя или на сколько увеличился ток за время открытого ключа определяется выражением:

Iвыкл – Iвкл = Uдросселя * tоткр / L

Напряжение на нагрузке может меняться. А оно определяет напряжение на дросселе. Существуют формулы, учитывающие это. Но в нашем случае я бы принял такие значения:

  • напряжение питания 12 В;
  • минимальное напряжение на элементе Пельтье 5 В;
  • значит максимальное напряжение на дросселе 12 – 5 = 7 В.

Длительность импульса открытого ключа tоткр определяется частотой периода ШИМ. Чем она выше, тем меньшей индуктивности необходим дроссель. Максимальная частота ШИМ платы Ардуино 62,5 кГц. Как получить такую частоту я расскажу в следующем уроке. Ее и будем использовать.

Возьмем худший вариант – ШИМ переключается ровно в середине периода.

  • Длительность периода 1 / 62500 Гц = 0,000016 сек = 16 мкс;
  • Длительность открытого ключа = 8 мкс.

Пульсации тока в таких схемах обычно задают до 20% от среднего тока. Не надо путать с пульсациями выходного напряжения. Их сглаживают конденсаторы на выходе схемы.

Если мы допускаем ток 5 А, то возьмем пульсации тока 10 % или 0,5 А.

L = Uдросселя * tоткр / Iпульсаций = 7 * 8 / 0,5 = 112 мкГн.

Ток насыщения дросселя.

Все на свете имеет предел. И дроссель тоже. При каком-то токе он перестает быть индуктивностью. Это и есть ток насыщения дросселя.

В нашем случае максимальный ток дросселя определяется как средний ток плюс пульсации, т.е. 5,5 А. Но лучше ток насыщения выбирать с запасом. Если мы хотим, чтобы работала аппаратная защита в этом варианте схемы, то он должен быть не менее 12 А.

Ток насыщения определяется воздушным зазором в магнитопроводе дросселя. В статьях о контроллерах элемента Пельтье я рассказывал о конструкции дросселя. Если я начну разворачивать эту тему подробно, то мы уйдем от Ардуино, от программирования и не знаю когда вернемся.

У меня дроссель выглядит так.


Естественно, провод обмотки дросселя должен быть достаточного сечения. Расчет простой – определение тепловых потерь за счет активного сопротивления обмотки.

Активное сопротивление обмотки:

Rа = ρ * l / S,

  • Rа – активное сопротивление обмотки;
  • Ρ – удельное сопротивление материала, для меди 0,0175 Ом мм2 / м;
  • l – длина обмотки;
  • S – сечение провода обмотки.

Тепловые потери на активном сопротивлении дросселя:

Ключевой регулятор потребляет от источника питания приличный ток и нельзя допускать, чтобы этот ток проходил через плату Ардуино. На схеме показано, что провода от блока питания подключены непосредственно к блокировочным конденсаторам C6 и C7.

Основные импульсные токи схемы проходят по контуру C6, нагрузка, L1, D2, R8. Эта цепь должна замыкаться связями с минимальной длиной.

Общий провод и шина питания платы Ардуино подключаются к блокировочному конденсатору C6.

Провода сигналов между платой Ардуино и модулем ключевого стабилизатора должны быть минимальной длины. Конденсаторы C1 и C2 лучше расположить на разъемах подключения к плате.

Я собрал схему на плате . Запаял только нужные компоненты. Выглядит собранная схема у меня так.

Я задал ШИМ 50% и проверил работу схемы.

  • При питании от компьютера плата формировала заданный ШИМ.
  • При автономном питании от внешнего блока питания все замечательно работало. На дросселе формировались импульсы с хорошими фронтами, на выходе было постоянное напряжение.
  • Когда я включил одновременно питание и от компьютера, и от внешнего блока питания у меня сгорела плата Ардуино.

Моя глупая ошибка. Расскажу, чтобы ее никто не повторил. Вообще, подключая внешний блок питания надо быть аккуратным, прозвонить все связи.

У меня случилось следующее. На схеме не было диода VD2. Я добавил его после этой неприятности. Я посчитал, что плату можно питать от внешнего источника через вывод Vin. Сам же написал в уроке 2, что плата может получать питание от внешнего источника через разъем (сигнал RWRIN). Но я думал, что это один и тот же сигнал, только на разных разъемах.

0 Рубрика: . Вы можете добавить в закладки.