Киреев А.О., Светлов А.В. БЕСПРОВОДНЫЕ СЕНСОРНЫЕ СЕТИ В СФЕРЕ ТЕХНОЛОГИЙ ОХРАНЫ ОБЪЕКТОВ

Устоявшийся термин «беспроводная сенсорная сеть» (БСС) обозначает новый класс беспроводных систем, которые представляют собой распределенную, самоорганизующуюся и устойчивую к отказам отдельных элементов сеть миниатюрных электронных устройств с автономными источниками питания. Интеллектуальные узлы такой сети способны ретранслировать сообщения по цепи, обеспечивая значительную площадь покрытия системы при малой мощности передатчиков и, следовательно, высокой энергетической эффективности системы.

В настоящее время большое внимание уделяется вопросам организации автоматизированного мониторинга территорий с целью получения оперативной информации о наличии нарушителя, его перемещении и несанкционированных действиях на территориях, прилегающих к особо важным (ядерным, правительственным, военным) объектам, к государственной границе, или находящихся в зоне ответственности разведподразделе-ний (мониторинг участков фронта, тыловых коммуникаций противника). Для рационального решения данных задач необходимо использовать новое поколение технических средств и алгоритмов, принципиально отличающихся от применяемых в настоящее время. Наиболее перспективным направлением в этой области следует признать создание беспроводных сенсорных сетей. Именно они дают возможность обеспечить тотальный целенаправленный мониторинг больших территорий.

Применительно к системам охраны объектов БСС должны обнаруживать и классифицировать нарушителя, определять координаты, прогнозировать траектории его движения. Обладая распределенным интеллектом, система самостоятельно обеспечивает изменение направления потоков информации, например, в обход вышедших из строя или временно не функционирующих узлов, организует надежную передачу информации на всей контролируемой территории и на центральный пункт.

Перспективными являются также БСС, в которых приемопередатчик каждого сенсора будет являться фактически датчиком обнаружения объекта (эффект снижения уровня несущей в радиоканале вследствие появления объекта в зоне действия сети).

Для обеспечения высокой надежности и защиты передаваемой информации в БСС следует разрабатывать собственные радиопротоколы, устойчивые к изменению характеристик канала связи, радиоподавлению, к перехвату и имитации данных. В этом случае целесообразным является использование технологий расширения спектра - методами DSSS (прямой числовой последовательности) и FHSS (скачкообразной перестройки частоты) .

Что касается механизмов доступа к среде передачи данных, то здесь появляются взаимоисключающие требования высокой энергетической эффективности системы и минимальных временных задержек распространения данных в БСС. Использование в качестве базового алгоритма CSMA/CA (множественный доступ к среде с контролем несущей и предотвращением коллизий) имеет свой недостаток - устройства сети должны находиться в режиме постоянного прослушивания эфира, что приводит к росту энергопотребления. В полностью асинхронных сетях этот алгоритм малоэффективен .

Наиболее приемлемым в такой ситуации выглядит алгоритм «слотового» CSMA/CA, совмещающий принципы синхронизированного доступа (временное разделения TDMA) и доступа на конкурентной основе.

Среди открытых стандартов в области беспроводных сенсорных сетей на сегодняшний момент ратифицирован только стандарт ZigBee, основанный на принятом ранее стандарте 802.15.4, который описывает физический уровень (PHY) и уровень доступа к среде (MAC) для беспроводных персональных сетей (WPAN). Эта технология изначально была разработана для задач, не требующих высоких скоростей передачи информации. Устройства таких сетей должны быть максимально дешевыми, со сверхнизким потреблением энергии .

Среди несомненных преимуществ ZigBee-решений следует отметить и существенные недостатки. Например, наличие трех различных классов устройств (координаторов, маршрутизаторов и оконечных устройств) существенно снижает отказоустойчивость сети в случае выхода из строя отдельных ее элементов. Кроме того, такое построение требует планирования размещения устройств еще на этапе проектирования системы, соответственно резко снижается устойчивость сети к изменениям в топологии.

Всех перечисленных недостатков лишены Mesh-сети - многоячейковые одноранговые сети, в которых каждый узел может ретранслировать пакеты в процессе доставки. Узлы такой сети равноправны и взаимозаменяемы - в результате улучшается масштабируемость системы, повышается ее отказоустойчивость .

Беспроводная сенсорная сеть охранной системы должна контролировать максимально возможную территорию. В связи с этим, одним из основных требований к выбору элементной базы для создания радиоканала между отдельными узлами сети является максимальная дальность связи. Работа в диапазоне частот 433 МГц (открыт для свободного использования в России) обладает рядом преимуществ по сравнению с работой в СВЧ диапазоне 2,4 ГГц (для которого выпускается основная номенклатура ZigBee устройств). Так, в диапазоне 433 МГц дальность уверенной связи в несколько раз больше, чем в диапазоне 2,4 ГГц, при той же мощности передатчика. Кроме того, устройства, работающие в диапазоне 433 МГц, обладают достаточно хорошей устойчивостью к действию преград на пути распространения радиоволн, таких как погодные осадки, перепады рельефа местности, деревья и пр. Радиоволны 433 МГц значительно лучше распространяются в замкнутых пространствах, таких как туннели метро, городские улицы и т.д., чем радиоволны диапазона 2,4 ГГц. Преимущество диапазона 2,4 ГГц в скорости передачи данных не является критичным в сфере охранных технологий, так как объем передаваемой информации, как правило, незначителен и ограничивается десятками байт (за исключением телеметрии).

Таким образом, выбор приемопередатчика для узла БСС охраны объектов будем вести в диапазоне 433 МГц. Трансиверы должны обладать высокой энергетической эффективностью (напряжение питания не более

3,3 В, низкие токи потребления), функционировать в температурном диапазоне минус 40... +85 °С.

Среди множества микросхем приемопередатчиков ISM-диапазона особое место занимают трансиверы XE-MICS. Для применения в беспроводных сенсорных сетях подходят 2 микросхемы этой фирмы: XE1203F и

Это интегральные однокристальные полудуплексные приемопередатчики, построенные по схеме прямого (Zero-IF) преобразования, обеспечивающие 2-х уровневую частотную манипуляцию без разрыва фазы (CPFSK) и NRZ кодирование. Таким образом, тип модуляции несущей, реализованный в приемопередатчиках XEMICS, позволяет рационально использовать рабочую полосу частот.

Общими для трансиверов XE1203F и XE1205F являются сверхмалое энергопотребление: работа в диапазоне напряжения питания 2,4...3,6 В, токи потребления:

0,2 мкА в спящем режиме;

14 мА в режиме приема;

62 мА в режиме передачи (+15 дБм) .

Рабочая полоса частот: 433-435 МГц. Температурный диапазон: минус 40. +85°С. Приемники транси-

веров идентичны между собой и построены по схеме с прямым преобразованием частоты. Внутри этих модулей встроен синтезатор частоты, основанный на петле сигма-дельта ФАПЧ с шагом в 500 Гц.

Приемники имеют индикатор уровня принимаемого сигнала RSSI (Received Signal Strength Indicator), что в сочетании с возможностью программирования выходной мощности, позволяет реализовать идею адаптивного управления энергопотреблением. В состав трансивера входит устройство контроля частоты FEI (Frequency Error Indicator), позволяющее получить информацию о смещении частоты гетеродина приемника и организовать АПЧ .

Трансиверы также обладают функцией распознавания данных (pattern recognition), благодаря которой трансивер может обнаружить программно заданное слово (до 4 байт) в принимаемом потоке данных. Последнюю особенность можно использовать для идентификации модулей в БСС, что сократит количество служебных байт в передаваемом пакете.

Основные отличия двух модулей проявляются в использовании различных методов расширения спектра.

Трансивер XE1203F обладает аппаратным блоком расширения спектра сигнала прямой последовательностью - Direct Sequence Spread Spectrum (DSSS). При активировании режима DSSS каждый бит данных кодируется 11-разрядным кодом Баркера: 101 1011 1000 или 0x5B8h. Автокорреляционная функция кода Баркера обладает ярко выраженным автокорреляционным пиком.

В отличие от XE1203F трансивер XE1205F (и модуль DP1205F на его основе) является узкополосным устройством. Наименьшее значение внутреннего полосового фильтра, которое можно установить 2разрядным конфигурационным регистром, составляет 10 кГц (используя специальные дополнительные настройки, это значение можно уменьшить даже до 7 кГц!). Количество возможных каналов в этом случае

Эта возможность позволяет использовать XE1205F для специфических узкополосных приложений. Использовать сужение полосы можно, если скорость передачи данных и девиация частоты не будет превышать значений 4800 бит и 5 кГц соответственно, и при условии, что тактовая частота опорного генератора стабилизируется резонатором, имеющим высокую стабильность, или используется частотная коррекция.

В трансивере используется 16-байтный буфер FIFO для хранения передаваемых или принимаемых байтов данных. Байты данных передаются и принимаются из буфера FIFO по внешнему стандартному 3-проводному последовательному интерфейсу SPI.

Узкополосность, а также малое время восстановления передатчика при переключении между каналами (~150 мкс) позволяют применять трансивер XE1205F для построения радиосистем, использующих метод частотных скачков (FHSS). Метод частотных скачков подразумевает, что вся отведенная для передачи полоса рабочих частот разделяется на определенное количество частотных каналов. Скачки с канала на канал происходят синхронно в некоторой последовательности (например, линейной или псевдослучайной).

Преимуществом трансивера XE1205F также является уникальная в своем классе чувствительность приемника -121 дБм.

Что касается скоростей передачи данных, то возможности модуля XE1203F при использовании кодека Баркера выглядят недостаточными даже для систем охраны- всего лишь 1,154 кБит. Этот показатель не позволит реализовать энергетически эффективную БСС, т.к. время сна, предусмотренное по протоколу CSMA/CA, будет слишком коротким.

Трансиверы узлов беспроводной сенсорной сети охраны объектов должны обеспечивать возможность:

создания Mesh-сети с увеличенным радиусом действия;

реализации на физическом уровне - технологий расширения спектра FHSS;

реализации на уровне доступа к среде - «слотового» CSMA/CA с синхронизацией доступа.

Основываясь на вышесказанном можно сделать вывод о предпочтительности использования модуля приемопередатчика XE1205F для организации физического и MAC уровня беспроводной сенсорной сети охраны объектов.

ЛИТЕРАТУРА

1. Варагузин В. Радиосети для сбора данных от сенсоров, мониторинга и управления на основе стандарта IEEE 802.15.4 // ТелеМультиМедиа. - 2005.-№6.- С23-27. - www.telemultimedia.ru

2. Вишневский В.М., Ляхов А.И., Портной С.Л., Шахнович И.В. Широкополосные беспроводные сети передачи информации. - М.: Техносфера, 2005 г. - 592 с.

3. Баскаков С., Оганов В. Беспроводные сенсорные сети на базе платформы MeshLogic™ // Электронные

компоненты. - 2006. - №8. - С.65-69.

4. Горюнов Г. Интегральный СВЧ трансивер XE1203. // Мир электронных компонентов. - 2004. - №1. -

Корпоративная версия технологии «Интернета вещей» (англ. Internet of Things, IoT) сегодня активно используется в промышленности. В рамках корпоративного «Интернета вещей» (англ. Enterprise Internet of Things, EIoT) применяются беспроводные сенсорные сети и средства управления, что открывает предприятиям новые возможности управления машинами и оборудованием. Беспроводные датчики, работающие от небольшого аккумулятора без подключения к проводной сети питания, в производственных условиях могут находиться в местах, совершенно недоступных для элементов управления предыдущих поколений.

EIoT повысил надежность, безопасность и комплексную совместимость систем и оборудования, что позволило удовлетворить самые жесткие требования к внедрению беспроводных технологий этого направления не только в промышленности, но и в сфере здравоохранения, финансовых услуг и т. д. EIoT учитывает потребности этих областей благодаря тому, что технические характеристики и элементы конструктивного исполнения устройств технологии этого нового направления намного превосходят аналогичные технологии IoT традиционных устройств, предназначенные для менее критических потребительских или коммерческих приложений.

Проблемы EIoT

Датчики и элементы управления с поддержкой EIoT могут работать практически в любом месте индустриальной среды, но до сих пор это скорее зависело от удачи, поскольку не каждое промышленное оборудование идеально подходит для использования в беспроводных сетях. Это связано с тем, что в развертывании IoT имеются два взаимосвязанных, но, на первый взгляд, противоречивых элемента:

  1. Непосредственно сама беспроводная сеть устройств, которая устанавливается с использованием датчиков и элементов управления, связанных с технологией малого радиуса действия с низким уровнем потребления мощности.
  2. Сеть IoT-датчиков, взаимодействующая с другим оборудованием, контроллерами и частями сети уже на большем расстоянии.

Рис. 1. Приложения, расположенные вдали от городских центров и традиционных телекоммуникационных услуг, для организации глобальной сети могут воспользоваться таким энергоэффективным коммуникационным протоколом, как LoRa

Именно невозможность надежной связи на больших расстояниях зачастую является наиболее существенным препятствием в условиях индустриальной среды. Эта проблема имеет простую причину: телекоммуникационная связь, которая осуществляется по проводным кабельным линиям или путем использования передачи сигналов через вышки сотовой связи, не всегда доступна в местах расположения промышленного оборудования. Кроме того, стоимость использования сервисов сотовой связи только для доставки нескольких пакетов данных от датчиков за один сеанс связи не имеет большого смысла как с экономической точки зрения, так и из чисто технических соображений. Кроме того, довольно часто возникает проблема энергоснабжения датчиков и устройств связи, которое весьма затруднительно организовать в отдаленных местах, где оборудование или инфраструктура не запитывается непосредственно от промышленной сети.

Несмотря на широкое покрытие сотовой связью населенных пунктов, в некоторых местах нет надежного сервиса для организации беспроводной связи. Это распространенная проблема для сельских районов и удаленных мест размещения промышленного оборудования, например отдельно расположенного оборудования нефтегазовой промышленности или трубо­проводного транспорта, системы водоснабжения и удаления сточных вод (рис. 1) и др. Такие узлы также зачастую находятся далеко от ближайшего технического обслуживающего персонала, который проверяет надлежащее функционирование приборов. Иногда инженеру требуется целый рабочий день, а то и несколько, для того чтобы добраться до оборудования и осмотреть его. Нередко затруднительно и просто найти специалистов, желающих работать в таких отдаленных районах. Поскольку, ввиду ограниченного покрытия связью, датчики и элементы управления с поддержкой EIoT достаточно редки в удаленных объектах, то здесь на помощь приходят энергоэффективные сети дальнего радиуса действия (англ. low-power wide area network, LPWAN).

BLE и LPWAN

Наиболее широко используемой беспроводной технологией короткого радиуса действия в системах EIoT является технология Bluetooth с низким энергопотреблением - BLE (англ. Bluetooth low energy, также известная как Bluetooth Smart). Основная причина высокой популярности BLE для EIoT - его энергоэффективность, которая позволяет датчикам и элементам управления работать длительное время с очень малым расходом энергии батарей. BLE управляет циклами сна, дежурным режимом и активными циклами. BLE также широко используется из-за мощности его радиочастотного сигнала, который позволяет этой технологии эффективно работать даже в сложных средах с повышенным уровнем высокочастотных шумов, поступающих цифровых сигналов от компьютерного оборудования и даже при наличии физических препятствий для распространения радиоволн. А ведь, как известно, все эти факторы являются привычными для индустриальной среды.

В проектах по реализации EIoT именно технология BLE является базовой для организации связи ближнего радиуса действия. Причем она может использоваться как на уже эксплуатируемых, так и на еще только проектируемых комплексах промышленного оборудования. Однако такой сети устройств с поддержкой BLE нужен способ получения инструкций и ретрансляции данных на более дальние расстояния. Опора на традиционную телекоммуникационную инфраструктуру, которая позволяет использовать двунаправленную связь по Wi-Fi или сигналы сотовой связи, невозможна из-за заслона, ограничивающего возможности применения этих сенсорных и управляющих сетей. Объединив BLE со сверхдальностью и энергоэффективностью технологии LoRa компании смогли развернуть EIoT в местах, где телекоммуникационная инфраструктура и инфраструктура питания недоступны, а это, в свою очередь, расширило географию реализации технологии «Интернета вещей».

Рис. 2. Датчики сначала подключаются к клиенту LoRa и затем – через шлюз LoRa

Протоколом глобальной сети LoRa часто является LPWAN, поскольку он обеспечивает безопасную двунаправленную передачу данных и связь с сетями IoT на больших расстояниях в течение многих лет без замены батарей. При использовании технологии LoRa открывается возможность отправлять и принимать сигналы на расстоянии примерно до 16 км, а установленные при необходимости репитеры (ретрансляторы) могут увеличить это расстояние уже до сотен километров. На рис. 2 показана схема работы LoRa. Для приложений IoT LoRa имеет множество преимуществ именно благодаря ее экономическим характеристикам и возможностям:

  • Поскольку LoRa, как и BLE, является технологией сверхнизкого энергопотребления, она способна работать в сетях устройств IoT с батарейным питанием и может обеспечить длительную работу от батареи, не требуя при этом частого технического обслуживания.
  • Узлы на базе технологии LoRa недорогие и позволяют компаниям сократить расходы на передачу данных по системам сотовой связи, а также отказаться от установки оптоволоконных или медных кабелей. Это устраняет основной финансовый барьер для организации связи удаленно расположенных датчиков и оборудования.
  • Технология LoRa хорошо работает и с сетевыми устройствами, размещенными внутри помещений, в том числе в сложных индустриальных средах.
  • LoRa обладает широкой масштабируемостью и совместимостью за счет поддержки миллиона узлов, ее можно соединить с государственными и частными сетями передачи данных и системами двунаправленной связи.

Итак, в то время как другие технологии LPWAN смогут лишь в отдаленной перспективе решить проблему дальности связи при реализации решений «Интернета вещей», технология LoRa предлагает для этого двунаправленную связь, защиту от помех и высокое информационное наполнение.

У LoRa есть и существенный недостаток - невысокая пропускная способность. Это делает ее непригодной для приложений, требующих передачи потоковых данных. Однако это ограничение не мешает использовать ее для широкого диапазона IoT-приложений, где время от времени передаются лишь небольшие пакеты данных.

Взаимодействие

Рис. 3. Модуль RM1xx от компании Laird, который включает в себя коммуникационные возможности для протоколов беспроводной сети LoRa и Bluetooth

Потенциал LoRa увеличивается вдвое, когда он сочетается с технологией, подобной BLE. Действуя вместе, они предоставляют набор беспроводных возможностей сверхнизкого энергопотребления для связи малого и дальнего радиуса действия, что расширяет возможности сетей EIoT. Так, например, центральная часть городских районов может быть покрыта всего лишь несколькими шлюзами LoRaWAN, являющимися основой для сетей датчиков с технологией BLE, которые теперь не зависят от традиционных телекоммуникационных инфраструктур. Таким образом, симбиоз LoRa и BLE устраняет ряд препятствий для расширения IoT как в мегаполисах, так и в малых городах, имеющих заслоны на пути широкого внедрения «Интернета вещей». Однако наибольший выигрыш от объединения LoRA и BLE получают беспроводные датчики, средства управления и другое оборудование, которые теперь могут устанавливаться без каких-либо ограничений буквально везде (рис. 3). В это особая заслуга именно BLE. BLE также позволяет этим устройствам совместно работать в интегрированной сети малого радиуса действия, управляемой, например, со смартфонов или планшетов, которые в данном случае используются в качестве удаленных беспроводных дисплеев. В этой связке технология LoRa, основываясь на мобильных возможностях BLE, выступает в качестве своеобразной радиорелейной станции, которая может отправлять и получать данные на больших расстояниях. Причем эти расстояния могут быть увеличены простыми шлюзами для передачи сигналов.

Существует уже немало наглядных примеров, демонстрирующих, как сопряжение LoRa и BLE позволяет сетям EIoT выйти на абсолютно иной технический уровень и усилить свою экспансию.

Практически все сферы жизни в 21 веке зависят от информационно-коммуникационных технологий (ИКТ). Данными обмениваются не только люди, но и всевозможные интеллектуальные системы, мобильные телефоны, носимые устройства, банкоматы, датчики. К «Интернету вещей» уже подключены по меньшей мере 5 млрд устройств. Функционирование любых крупных комплексов — предприятий промышленности, энергетики, сельского хозяйства, торговых центров, музеев, офисов, жилых зданий — сопряжено с постоянным контролем ситуации на их территории. Чувствительные сенсоры в режиме реального времени следят за исправностью оборудования, организацией взаимодействия приборов между собой, предупреждают о необходимости их замены или о чрезвычайных ситуациях. При стремительно растущих объемах данных необходим простой и удобный способ обмена ими между устройствами и центрами обработки информации.

Версия для печати:

Беспров одные сенсорные сети (БСС, Wireless Sensor Networks), состоящие из беспроводных сенсоров и управляющих устройств и способные к самоорганизации с помощью интеллектуальных алгоритмов, демонстрируют масштабные перспективы использования для контроля здоровья человека, состояния окружающей среды, функционирования производственных и транспортных систем, учета различных ресурсов и др. В настоящем выпуске информационного бюллетеня представлены технологические тренды в области БСС, связанные с обеспечением постоянной работы беспроводных сенсоров и их применением в двух областях современной экономики - передовом производстве (advanced manufacturing) и «умной» энергетике (smart grid).


Самозарядные сенсорные устройства

Для развития беспроводных сенсорных сетей важно решить проблему их энергопитания. Перспективным трендом является создание долговечных автономных устройств с минимальным потреблением энергии - преобразованной из внешних источников.

Беспроводные сенсорные устройства могут, например, питаться от энергии радиосигнала, отправленного на них от какого‑либо передатчика (подобно устройствам радиочастотной идентификации (RFID) или бесконтактным смарт-картам). Эта энергия используется устройством как для подзарядки сенсора, так и для формирования ответного сигнала с информацией о текущем состоянии контролируемого объекта.

Другой способ - пассивное преобразование энергии из внешней среды (energy harvesting): солнечной (снаружи помещения при достаточно ясной погоде), тепловой, энергии механических вибраций (от работающих рядом приборов - сборочных аппаратов, конвейеров и т. п.), энергии вибраций самого сенсора (в случае с носимыми устройствами), фоновых радиоизлучений от окружающих электроприборов (в том числе Wi-Fi).

Реализация передового производства на базе беспроводных сенсорных сетей

Нерациональное использование ресурсов и производственных мощностей, выработка большого количества загрязняющих окружающую среду отходов, отсутствие постоянного контроля состояния объектов на предприятиях - эти и другие проблемы современной промышленности стимулируют переход к модели передового производства (advanced manufacturing). Для него характерны использование новых материалов и экологически безопасных технологий (green technologies), а также повсеместное применение ИКТ и интеллектуальных систем, в частности робототехники и беспроводных сенсорных сетей.

Индустриальные беспроводные сенсорные сети (ИБСС, Industrial Wireless Sensor Networks) - важнейший фактор реализации передового производства. Для управления и контроля состояния объектов на предприятии (оборудования, конвейеров, сборочных аппаратов, реакторов) используется набор взаимосвязанных беспроводных сенсоров и информационных систем, которые обрабатывают данные с сенсоров и взаимодействуют с контролируемыми объектами с помощью управляющих устройств. Такая автоматизированная система реагирует на любые изменения показателей на предприятии, оповещает персонал об авариях и проблемных ситуациях, анализирует эффективность использования оборудования, оценивает уровень загрязнения окружающей среды и объемы производимых отходов.

«Умные» энергосети

Глобальная проблема нерационального использования электроэнергии особенно актуальна для России. Большие затраты на генерацию электроэнергии увеличивают себестоимость производства продукции, что ложится двойным бременем на конечного потребителя. Для повышения эффективности и надежности энергосистем многие страны переходят к концепции «умных» энергосетей (smart grid).

Такая сеть управляет в режиме реального времени всеми подсоединенными к ней генерирующими источниками, магистральными и распределительными сетями и объектами, потребляющими электроэнергию. Для управления «умной» энергосетью используются беспроводные сенсорные сети, которые контролируют объемы энергопроизводства и энергопотребления на разных ее участках. С помощью информационных систем рассчитывается оптимальное распределение энергии в сети, строятся прогнозы на разные сезоны и периоды дня, синхронизируются выработка энергии и ее доставка, контролируется безопасность линий электропередач. Для повышения эффективности энергосети ее некритические элементы на время пониженной активности выключаются.

Мониторинг глобальных технологических трендов проводится Институтом статистических исследований и экономики знаний Высшей школы экономики () в рамках Программы фундаментальных исследований НИУ ВШЭ.

При подготовке трендлеттера использовались следующие источники: Прогноз научно-технологического развития РФ до 2030 года (prognoz2030.hse.ru), материалы научного журнала «Форсайт» (foresight-journal.hse.ru), данные Web of Science , Orbit , idc.com, marketsandmarkets.com, wintergreenresearch.com, greentechmedia.com, greenpatrol.ru и др.



Архитектура типичной беспроводной сенсорной сети

Беспроводная сенсорная сеть - это распределённая, самоорганизующаяся сеть множества датчиков (сенсоров) и исполнительных устройств, объединенных между собой посредством радиоканала. Причем область покрытия подобной сети может составлять от нескольких метров до нескольких километров за счет способности ретрансляции сообщений от одного элемента к другому.


История и сфера использования

Одним из первых прототипов сенсорной сети можно считать систему СОСУС, предназначенную для обнаружения и идентификации подводных лодок. Технологии беспроводных сенсорных сетей стали активно развиваться сравнительно недавно - в середине 90-х годов. Однако лишь в начале XXI века развитие микроэлектроники позволило производить для таких устройств достаточно дешевую элементную базу. Современные беспроводные сети в основном базируются на стандарте ZigBee. Немалое количество отраслей и сегментов рынка (производство, различные виды транспорта, обеспечение жизнедеятельности, охрана), готовых для внедрения сенсорных сетей, и это количество непрерывно увеличивается . Тенденция обусловлена усложнением технологических процессов, развитием производства, расширяющимися потребностями частных лиц в сегментах безопасности, контроля ресурсов и использования товаро-материальных ценностей. С развитием полупроводниковых технологий появляются новые практические задачи и теоретические проблемы, связанные с применениями сенсорных сетей в промышленности, жилищно-коммунальном комплексе, домашних хозяйствах. Использование недорогих беспроводных сенсорных устройств контроля параметров открывает новые области для применения систем телеметрии и контроля, такие как :

  • Своевременное выявление возможных отказов исполнительных механизмов, по контролю таких параметров, как вибрация, температура, давление и т. п.;
  • Контроль доступа в режиме реального времени к удаленным системам объекта мониторинга;
    • обеспечение охраны музейных ценностей
    • обеспечение учёта экспонатов
    • автоматическая ревизия экспонатов
  • Автоматизация инспекции и технического обслуживания промышленных активов;
  • Управление коммерческими активами;
  • Применение как компоненты в энерго- и ресурсосберегающих технологий;
  • Контроль экологических параметров окружающей среды

Следует отметить, что несмотря на длительную историю сенсорных сетей , концепция построения сенсорной сети окончательно не оформилась и не выразилась в определенные программно-аппаратные (платформенные) решения. Реализация сенсорных сетей на текущем этапе во многом зависит от конкретных требований индустриальной задачи. Архитектура, программно-аппаратная реализация находится на этапе интенсивного формирования технологии, что обращает внимание разработчиков с целью поиска технологической ниши будущих производителей .


Технологии

Беспроводные сенсорные сети (WSN) состоят из миниатюрных вычислительных устройств - мотов, снабженных сенсорами (датчиками температуры, давления, освещенности, уровня вибрации, местоположения и т. п.) и приемопередатчиками сигналов, работающими в заданном радиодиапазоне. Гибкая архитектура, снижение затрат при монтаже выделяют беспроводные сети интеллектуальных датчиков среди других беспроводных и проводных интерфейсов передачи данных, особенно когда речь идет о большом количестве соединенных между собой устройств, сенсорная сеть позволяет подключать до 65000 устройств. Постоянное снижение стоимости беспроводных решений, повышение их эксплуатационных параметров позволяют постепенно переориентироваться с проводных решений в системах сбора телеметрических данных, средств дистанционной диагностики, обмена информации. «Сенсорная сеть» является сегодня устоявшимся термином (англ. Sensor Networks ), обозначающим распределенную, самоорганизующуюся, устойчивую к отказу отдельных элементов сеть из необслуживаемых и не требующих специальной установки устройств . Каждый узел сенсорной сети может содержать различные датчики для контроля внешней среды, микрокомпьютер и радиоприемопередатчик. Это позволяет устройству проводить измерения, самостоятельно проводить начальную обработку данных и поддерживать связь с внешней информационной системой.

Технология ретранслируемой ближней радиосвязи 802.15.4/ZigBee, известная как «Сенсорные сети» (англ. WSN - Wireless Sensor Network ), является одним из современных направлений развития самоорганизующихся отказоустойчивых распределенных систем наблюдения и управления ресурсами и процессами. Сегодня технология беспроводных сенсорных сетей, является единственной беспроводной технологией, с помощью которой можно решить задачи мониторинга и контроля, которые критичны к времени работы датчиков. Объединенные в беспроводную сенсорную сеть датчики образуют территориально-распределенную самоорганизующуюся систему сбора, обработки и передачи информации. Основной областью применения является контроль и мониторинг измеряемых параметров физических сред и объектов .

Принятый стандарт IEEE 802.15.4 описывает контроль доступа к беспроводному каналу и физический уровень для низкоскоростных беспроводных персональных сетей, то есть два нижних уровня согласно сетевой модели OSI. «Классическая» архитектура сенсорной сети основана на типовом узле, который включает в себя , пример типового узла RC2200AT-SPPIO :

  • радиотракт;
  • процессорный модуль;
  • элемент питания;
  • различные датчики.

Типовой узел может быть представлен тремя типами устройств :

  • Сетевой координатор (FFD - Fully Function Device);
    • осуществляет глобальную координацию, организацию и установку параметров сети;
    • наиболее сложный из трех типов устройств, требует наибольший объем памяти и источник питания;
  • Устройство с полным набором функций (FFD - Fully Function Device);
    • поддержка 802.15.4;
    • дополнительная память и энергопотребление позволяет выполнять роль координатора сети;
    • поддержка всех типов топологий («точка-точка», «звезда», «дерево», «ячеистая сеть»);
    • способность выполнять роль координатора сети;
    • способность обращаться к другим устройствам в сети;
  • (RFD - Reduced Function Device);
    • поддерживает ограниченный набор функций 802.15.4;
    • поддержка топологий «точка-точка», «звезда»;
    • не выполняет функции координатора;
    • обращается к координатору сети и маршрутизатору;

Примечания

  1. 1 2 3 Рагозин Д.В.. Моделирование синхронизированных сенсорных сетей. Проблеми програмування. 2008. № 2-3. Спеціальний випуск – 721-729 с.
  2. Баранова Е. IEEE 802.15.4 и его программная надстройка ZigBee. // Телемультимедиа, 8 мая 2008.
  3. Levis P., Madden S., Polastre J. and dr. “TinyOS: An operating system for wireless sensor networks” // W. Weber, J.M. Rabaey, E. Aarts (Eds.) // In Ambient Intelligence. – New York, NY: Springer-Verlag, 2005. – 374 p.
  4. Algoritmic Acpects of Wireless Sensor Networks. // Miroslaw Kutulowski, Jacek Cichon, Przemislaw Kubiak, Eds. – Poland, Wrozlaw: Springer, 2007.
  5. Интеллектуальные системы на базе сенсорных сетей. - www.ipmce.ru/img/release/is_sensor.pdf // Институт точной механики и вычислительной техники им. С.А. Лебедева РАН, 2009.
  6. Полностью законченные ZigBee-модули компании RadioCrafts. - kit-e.ru/articles/wireless/2006_3_138.php // Компоненты и технологии.
  7. Стек протоколов ZigBee/802.15.4 на платформе Freescale Semiconductor - www.freescale.com/files/abstract/global/RUSSIA_STKARCH_OV.ppt, 2004
скачать
Данный реферат составлен на основе

Уже близок тот день, когда сотни миллионов полупроводниковых сенсоров будут интегрироваться во все, что только возможно, начиная от брелока на ключе и заканчивая детской коляской. И все они будут в состоянии не только выступать в роли интеллектуальных датчиков, но и выполнять первичную обработку информации, а также взаимодействовать друг с другом, образуя единую беспроводную сенсорную сеть. При этом такие датчики практически не будут потреблять электроэнергию, так как встроенных миниатюрных аккумуляторов будет хватать на несколько лет, то есть на весь срок работы сенсоров. Это будет концептуально новый тип компьютерной системы, функционирующей с помощью беспроводной сенсорной сети. Такую сеть принято называть Ad-hoc Wireless Sensor Networks. Термин Ad-hoc позаимствован из современных беспроводных сетей, действующих, например, в стандарте IEEE 802.11b. Такие беспроводные сети имеют два режима взаимодействия: режим Infrastructure и Ad-hoc. В режиме Infrastructure узлы сети взаимодействуют друг с другом не напрямую, а через точку доступа (Access Point), которая выполняет в беспроводной сети роль своеобразного концентратора (аналогично тому, как это происходит в традиционных кабельных сетях). В режиме Ad-hoc, который также называется Peer-to-Peer («точка-точка»), станции непосредственно взаимодействуют друг с другом. Соответственно и в беспроводных сенсорных сетях режим Ad-hoc означает, что все сенсоры напрямую взаимодействуют друг с другом, создавая своеобразную сотовую сеть

Беспроводные сенсорные сети - это своеобразный шаг на пути перехода в следующую эпоху - когда компьютеры будут непосредственно соединены с физическим миром и смогут угадывать желания пользователей, а также принимать за них решения.
Давайте немного помечтаем, что принесут нам такие сенсорные сети в будущем. Представьте себе детские кроватки, слушающие дыхание младенцев; браслеты, следящие за состоянием пациентов в клинике; детекторы дыма, которые могут не только в случае необходимости вызвать пожарных, но и заранее проинформируют их об очаге возгорания и степени сложности пожара. Электронные устройства смогут распознавать друг друга, источники питания будут напоминать о том, что им необходимо «подкрепиться».

Представьте сотни тысяч сенсорных датчиков, объединенных в общую сеть в лесу. В таком лесу просто невозможно будет заблудиться, поскольку передвижение человека будет фиксироваться, и анализироваться датчиками. Другой пример - датчики в поле, настроенные на контроль за состоянием почвы и в зависимости от меняющихся условий регулирующие полив и количество вносимых удобрений.
Не менее полезными будут сенсорные сети на дорогах. Общаясь друг с другом, они смогут регулировать поток машин. Это же мечта любого водителя - дороги без пробок! Такие сети смогут справляться с этой задачей значительно эффективнее, чем любое ведомство. Проблема контроля
правонарушений на дорогах решится при этом сама собой.

Использование сенсорных сетей для управления электроснабжением позволит достичь невероятной экономии электроэнергии. Представьте себе такую управляющую сеть у вас в квартире. Отслеживая ваше местонахождение, датчики смогут повсюду выключать за вами свет и включать его по мере необходимости. Ну а если использовать такие сети для контроля освещения улиц и дорог, то проблема нехватки электричества исчезнет сама собой. Для того, чтобы сенсорные сети стали реальностью завтрашнего дня, исследования в этом направлении ведутся уже сегодня. И лидером в этой области является корпорация Intel, которая поддерживает все передовые компьютерные технологии будущего. Особое внимание, уделяя разработке беспроводных много узловых сенсорных сетей, способных к самостоятельному автоматическому формированию и настройке по мере необходимости. Реализация этой технологии позволит развернуть сеть недорогих, но при этом весьма сложных полупроводниковых сенсорных устройств, которые смогут самостоятельно устанавливать связь друг с другом, докладывая о тех или иных изменениях в окружающей обстановке. К примеру, сенсор Mica оснащается 128 килобайтами программой флэш-памяти, 256 килобайтами флэш-памяти для хранения данных и радиопередатчиком, работающим на частоте 900 МГц.
Некоторые из этих устройств работают под управлением операционной системы
TinyOS , код этой операционной системы является открытым и состоит всего из
8.5 Кб.

Такие устройства найдут применение в принципиально новых областях, например в разработке интеллектуальных предметов одежды, подключенных одеял, которые будут следить за состоянием здоровья новорожденного и сообщать важнейшие показатели его жизнедеятельности, интеллектуальных фермерских хозяйств, в которых полупроводниковые датчики, установленные в почве, займутся управлением ирригационной
системой и внесением удобрений. Исследованием сенсорных сетей в корпорации Intel занимается
знаменитая исследовательская лаборатория Intel Berkeley Research laboratory, расположенная в штате Калифорния. Существующие сегодня экспериментальные сенсорные сети лишь отчасти удовлетворяют вышеизложенным требованиям. Так, на сегодняшний день сети состоят только из сотен сенсоров с ограниченной зоной покрытия и выполняют лишь четко определенные задачи. Они способны передавать лишь определенный тип информации от одного датчика к другому и только в заданной полосе пропускания. Потребление энергии также нельзя назвать ничтожно малым
- заряда батареи хватает всего на несколько дней. Существующие сенсорные датчики пока еще достаточно инертны, а о высокой надежности и незаметности в эксплуатации (хотя бы из-за размеров) и речи не идет. Ну и, конечно же, такие сенсоры стоят достаточно дорого, так что сеть, состоящая из сотни сенсоров, обходится недешево. Но надо помнить, что речь идет об экспериментальных сетях и о развитии технологии будущего. В то же время экспериментальные сенсорные сети уже сейчас приносят пользу. Одна из таких сенсорных сетей, созданная совместными усилиями исследовательской лаборатории Intel Berkeley, институтом Атлантики и Калифорнийским университетом, действует на Большом утином острове (Great Duck Island) в штате Мэн.

Задача этой сети - изучение микросреды обитания различных биологических организмов населяющих остров.
Любое человеческое вмешательство (даже с целью изучения) иногда излишне,
вот тут-то и приходят на выручку сенсорные сети, позволяющие без непосредственного участия человека собирать все необходимую информацию.

Сенсорная сеть использует в качестве узловых элементов две платы. На первой плате расположены температурный датчик, датчики влажности и барометрического давления и инфракрасный датчик. На второй плате находятся микропроцессор (частота 4 МГц), оперативная память объемом 1 Кбайт, флэш-память для хранения программ и данных, источник питания (две батарейки типоразмера АА) и радиопередатчик/
приемник, работающий на частоте 900 МГц. Сенсоры позволяют регистрировать всю необходимую информацию и передавать ее в базу данных главного компьютера. Все датчики предварительно проходят тщательное тестирование - плату с датчиками погружают в воду надвое суток и следят за ее функциональностью. Все сенсорные узлы образуют единую беспроводную сеть и способны обмениваться информацией. При этом передача информации от удаленного узла сети к шлюзу (Gateway Sensor) происходит по цепочке, то есть от одного узла сети к другому, что позволяет создавать большую зону покрытия.

Через шлюз информация достигает главного компьютера. Шлюз использует направленную антенну, что позволяет увеличить расстояние передачи до 300 м. С главного компьютера информация с помощью спутниковой связи передается через Интернет в исследовательский центр, расположенный в Калифорнии.

Не менее активно сотрудники лаборатории работают над прецизионной биологией, созданием биочипов. Кроме сенсорного восприятия мира твердых вещей, исследуется возможность "ощущать" жидкие среды и биологические, развивающиеся объекты. Подобные исследования открывают колоссальные перспективы для медицинских и фармацевтических разработок, осуществления химических процессов и изготовления биологических препаратов. Поскольку главное предназначение сенсорных сетей – восприятие и передача полезной информации, специалисты лаборатории Intel в Беркли заняты разработкой методики объединения сенсоров с предметами, мониторинг которых вменяется им в обязанность, а также исследуют возможность создания «актуаторов» - устройств на основе сенсоров, которые позволяют влиять на ситуацию, а не только регистрировать ее состояние. Сенсорные сети очевидным образом полезны для военных приложений, одна из возможных вариаций сетей проходила "боевые" испытания в Афганистане, где вооруженные силы США разместили несколько сот сенсоров с целью отслеживания передвижений боевой техники противника. Однако о внедрении
реальных сетей в нашу жизнь говорить рано, сеть уязвима в отказоустойчивости. Атакой в сенсорной сети, приводящей к отказу в обслуживании (Denial of Service - DoS), является любое событие, которое уменьшает или ликвидирует возможность сети выполнять ожидаемую от нее функцию. Авторы предлагают основывать протоколы сенсорных сетей на многоуровневой архитектуре, что может повредить эффективности сети, но повысит ее надежность. Обсуждаются виды DoS-атак, типичные для каждого уровня, и приемлемые методы защиты. Таким образом, уже сегодня, несмотря на несовершенство и пока еще достаточно узкий круг использования, сенсорные сети находят применение в науке, а в дальнейшем и в жизни.

Использовались материалы с сайтов: