Основные принципы сотовой телефонии довольно просты. Первоначально Федеральная комиссия по связи установила географические зоны покрытия сотовых радиосистем на основе измененных данных переписи 1980 г. Идея сотовой связи состоит в том, что каждая зона подразделяется на ячейки шестиугольной формы, которые, совмещаясь, образуют структуру, напоминающую пчелиные соты, как показано на рисунке 6.1, а. Шестиугольная форма была выбрана потому, что она обеспечивает наиболее эффективную передачу, приблизительно соответствуя круговой диаграмме направленности и при этом устраняя щели, которые всегда возникают между соседними окружностями.

Сота определяется своими физическими размерами, численностью населения и структурой трафика. Федеральная комиссия по связи не регламентирует количеств сот в системе и их размер, предоставляя операторам возможность установить эти параметры в соответствии с ожидаемой структурой трафика. Каждой географической области выделяется фиксированное количество сотовых речевых каналов. Физические размеры соты зависят от абонентской плотности и структуры вызовов. Например, крупные соты (макросоты) обычно имеют радиус от 1,6 до 24 км при мощности передатчика базовой станции от 1 Вт до 6 Вт. Самые маленькие соты (микросоты) обычно имеют радиус 460 м или меньше при мощности передатчика базовой станции от 0,1 Вт до 1 Вт. На рисунке 6.1, б показана сотовая конфигурация с сотами двух размеров.

Рисунок 6.1. – Сотовая структура ячеек а);сотовая структура с сотами двух размеров б) классификация сот в)

Микросоты чаще всего используются в регионах с высокой плотностью населения. В силу своего небольшого радиуса действия микросоты менее подвержены воздействиям, ухудшающим качество передачи, например, отражениям и задержкам сигнала.

Макросота может накладываться на группу микросот, при этом микросоты обслуживают медленно перемещающиеся мобильные аппараты, а макросота – быстро перемещающиеся аппараты. Мобильный аппарат способен определять скорость своего перемещения как быструю или медленную. Это позволяет уменьшить число переходов из одной соты в другую и коррекции данных о месте нахождения.

Алгоритм перехода из одной соты в другую может быть изменен при малых расстояниях между мобильным аппаратом и базовой станцией микросоты.

Иногда радиосигналы в соте слиш­ком слабы, чтобы обеспечить надеж­ную связь внутри помещений. Осо­бенно это касается хорошо экрани­рованных участков и зон с высоким уровнем помех. В таких случаях ис­пользуются очень маленькие соты – пикосоты. Пикосоты внутри помеще­ний могут использовать те же час­тоты, что и обычные соты данного региона, особенно при благоприятной окружающей среде, как, например, в подземных тоннелях.

При планировании систем, использующих соты шестиугольной формы, передатчики базовой станции могут раз­мещаться в центре соты, на ребре соты или в вер­шине соты (рисунок 6.2 а, б, в соответственно). В сотах с передатчиком в центре используются обычно всенаправленные антенны, а в сотах с передатчиками на ребре или в вершине – секторные направленные антенны.

Всенаправленные антенны излучают и принимают сигналы одинаково во всех направлениях.

Рисунок 6.2 – Размещение передатчиков в сотах: в центре а); на ребре б); в вершине в)

В системе сотовой связи одна мощная стационарная базовая станция, расположенная высоко над центром города, может заменяться многочисленными одинаковыми маломощными станциями, которые устанавливаются в зоне покрытия на площадках, расположенных ближе к земле..

Соты, использующие одну и ту же группу радиоканалов, могут избежать взаимных влияний, если они правильно разнесены. При этом наблюдается повторное использование частот. Повторное использование частот – это выделение одной и той же группы частот (каналов) нескольким сотам при условии, что эти соты разделены значительны­ми расстояниями. Повторному использованию частот способствует уменьшение зоны обслуживания каждой соты. Базовой станции каждой соты выделяется группа рабочих частот, отличающихся от частот соседних сот, а антенны базовой станции выбираются таким образом, чтобы охватить желаемую зону обслуживания в пределах своей соты. Поскольку зона обслуживания ограничена границами одной соты, различные соты могут использовать одну и ту же группу рабочих частот без взаимных влияний при условии, что две таких соты находятся на достаточном расстоянии друг от друга.

Географическая зона обслуживания сотовой системы, содержащая несколько групп сот делится на кластеры (рисунок 6.3). Каждый кластер состоит из семи сот, которым выделяется одинаковое количество полнодуплексных каналов связи. Соты с одинаковыми буквенными обозначениями используют одну и ту же группу рабочих частот. Как видно из рисунка, одинаковые группы частот используются во всех трех кластерах, что позволяет в три раза увеличить количество доступных каналов мобильной связи. Буквы A , B , C , D , E , F и G обозначают семь групп частот.


Рисунок 6.3 – Принцип повторного использования частот в сотовой связи

Рассмотрим систему с фиксированным количеством полнодуплексных каналов, доступных в некоторой области. Каждая зона обслуживания разделя­ется на кластеры и получает группу каналов, которые распределяются между N сотами кластера, группируясь в неповторяющиеся комбинации. Все соты имеют одинаковое количество каналов, но при этом они могут обслуживать зоны раз­ового размера.

Таким образом, общее число каналов сотовой связи, доступных в кластере, можно представить выражением:

F = GN (6.1)

где F – число полнодуплексных каналов сотовой связи, доступных в кластере;

G – число каналов в соте;

N – число сот в кластере.

Если кластер «копируется» в пределах заданной зоны об­служивания m раз, то суммарное число полно дуплексных каналов составит:

C = mGN = mF (6.2)

где С – суммарное число каналов в заданной зоне;

m – число кластеров в заданной зоне.

Из выражений (6.1) и (6.2) видно, что суммарное число каналов в сотовой телефонной системе прямо пропорционально количеству «повторений» кластера в заданной зоне обслуживания. Если размер кластера уменьшается, а размер соты остается неизменным, то для покрытия заданной зоны обслуживания потребуется больше кластеров, и суммарное число каналов в системе возрастет.

Число абонентов, которые могут одновременно использовать одну и ту же группу частот (каналов), находясь не в соседних ячейках небольшой зоны об­служивания (например, в пределах города), зависит от общего числа ячеек в данной зоне. Обычно число таких абонентов равно четырем, однако в густона­селенных регионах оно может быть значительно больше. Это число называют коэффициентом повторного использования частот или FRF Frequency reuse factor . Математически его можно выразить отношением:

(6.3)

где N – общее число полно дуплексных каналов в зоне обслуживания;

С – общее число полнодуплексных каналов в соте.

В условиях прогнозируемого увеличения трафика сотовой связи возросший спрос на обслуживание удовлетворяют путем уменьшения размера соты, раз­деляя ее на несколько сот, каждая из которых имеет свою базовую станцию. Эффективное разделение сот позволяет системе обрабатывать больше вызовов при условии, что соты не будут слишком маленькими. Если диаметр соты стано­вится меньше 460 м, то базовые станции соседних ячеек будут влиять друг на друга. Соотношение между повторным использованием частот и размером кластера определяет, как можно изменить масштаб сотовой системы в случае увеличения абонентской плотности. Чем меньше сот в кластере, тем больше вероятность взаимных влияний между каналами.

Поскольку соты имеют шестиугольную форму, каждая из них всегда имеет шесть равноудаленных соседних сот, и углы между линиями, соединяющими центр любой соты с центрами соседних сот, кратны 60°. Поэтому число возмож­ных размеров кластера и схем размещения сот ограничено. Для соединения сот между собой без пробелов (мозаичным способом) геометрические размеры ше­стиугольника должны быть такими, чтобы число сот в кластере удовлетворяло условию:

(6.4)

где N – число сот в кластере; i и j – неотрицательные целые числа.

Отыскание маршрута к ближайшим сотам с совмещенным каналом (так называемым сотам первого яруса) происходит следующим образом:

Перемещение на i сот (через центры соседних сот):

Перемещение на j сот вперед (через центры соседних сот).

Например, число сот в кластере и место­положение сот первого яруса для следующих значений: j = 2. i = 3 будет определяться из выражения 6.4 (рисунок 6.4) N = 3 2 + 3 2 + 2 2 = 19.

На рисунке 6.5 показаны шесть ближайших сот, использующих те же каналы, что и сота А .


Процесс передачи обслуживания из одной соты в другую, т.е. когда мобильный аппарат удаляется от базовой станции 1 к базовой станции 2 (рисунок 6.6) включает четыре основных этапа:

1) инициирование – мобильный аппарат или сеть выявляет необходимость в передаче обслуживания и инициирует необходимые сетевые процедуры;

2) резервирование ресурсов – с помощью соответствующих сетевых проце­урр резервируются ресурсы сети, необходимые дляпередачи обслуживания (речевой канал и канал управления);

3) исполнение – непосредственная передача управления от одной базовой станции к другой;

4) окончание – излишние сетевые ресурсы освобождаются, становясь доступ­ными другим мобильным аппаратам.

Рисунок 6.6 – Передача обслуживания

Для этого предлагаем вам отправиться в компанию «Билайн ».

На территории России установлено огромное количество БС - базовых станций. Наверное, многие из вас сами видели возвышающиеся в полях красно-белые конструкции или установленные на крышах нежилых зданий сооружения. Каждая такая базовая станция способна поймать сигнал от сотового телефона на расстоянии до 35 км, связываясь с ним по служебным или голосовым каналам .

После того, как вы набрали на своем телефоне номер нужного абонента , происходит следующее: мобильник находит ближайшую БС, связывается с ней по служебному каналу и запрашивает голосовой канал . После этого БС отсылает запрос на контроллер (BSC), который затем поступает на коммуникатор. Если вызываемый абонент обслуживается у того же оператора , что и вы, то коммуникатор проведет сверку с базой данных Home Location Register (HLR), чтобы выяснить, где именно находится тот, кому вы звоните, и перенаправит вызов на нужный коммутатор , который затем переведет звонок на контроллер и далее на Базовую Станцию. Ну и наконец, Базовая Станция свяжется с мобильным телефоном нужного человека и соединит вас с ним. А если тот, с кем вы хотите поговорить, является абонентом другого сотового оператора , или вы звоните на городской номер , то коммутатор «найдет» соответствующий коммутатор другой сети и обратится к нему. Звучит достаточно запутанно, правда? Попробуем разобрать этот вопрос более подробно.

Но вернемся к оборудованию. Как мы уже говорили, с БС вызов переводится на контроллер (BSC). Внешне он мало чем отличается от Базовой Станции :

Количество БС, которые в состоянии обслужить контроллер, может достигать шести десятков. Контроллер и БС связываются по оптическому или радиорелейному каналам . Контроллер управляет работой радиоканалов.

Ниже вы можете увидеть, что из себя представляет коммутатор :

Количество обслуживаемых коммутатором контроллеров варьируется от двух до тридцати. Коммутаторы размещают в больших помещениях, заполненных металлическими шкафами с оборудованием.

Задача коммутатора состоит в управлении трафиком . Если раньше чтобы поговорить друг с другом, абонентам нужно было сначала связываться с телефонисткой, которая затем вручную переставляла нужные провода, то теперь с ее ролью отлично справляется коммутатор .

Внутри автомобилей располагаются устройства, предназначенные для съема и обработки данных :

Контроллеры и коммутаторы находятся под бдительным контролем 24 часа в сутки. Слежение ведется в так называемом ЦКС (Центре Управления Полeтами Цeнтра Контрoля Сeти).

aslan wrote in February 2nd, 2016

Сотовая связь с недавних пор так прочно вошла в нашу повседневную жизнь, что трудно представить современное общество без нее. Как и многие другие великие изобретения мобильный телефон сильно повлиял на нашу жизнь, и на многие ее сферы. Трудно сказать каким было бы будущее, если бы не этот удобный вид связи. Наверняка таким же, как и в фильме "Назад в Будущее-2", где есть летающие авто, ховерборды, и многое другое, но нет сотовой связи!

Но сегодня в специальном репортаже для будет рассказ не о будущем, а о том, как устроена и работает современная сотовая связь.


Для того, чтобы узнать о работе современной сотовой связи в формате 3G/4G, я напросился в гости к новому федеральному оператору Tele2 и провел целый день с их инженерами, которые объяснили мне все тонкости передач данных через наши мобильные телефоны.

Но расскажу вначале немного об истории возникновения сотовой связи.

Принципы работы беспрводной связи были опробованы почти 70 лет назад - первый общественный подвижный радиотелефон появился в 1946 г. в Сент-Луисе, США. В Советском союзе опытный образец мобильного радиотелефона был создан в 1957 году, потом ученые других стран создавали подобные устройства с различными характеристиками, и только в 70-х годах прошлого века в Америке были определены современные принципы работы сотовой связи, после чего и началось ее развитие.

Мартин Купер - изобретатель прототипа портативного сотового телефона Motorola DynaTAC весом в 1,15 кг и размерами 22,5х12,5х3,75 см

Если в западных странах к середине 90-х годов прошлого века сотовая связь была распространена повсеместно и ей пользовалась большая часть населения, то в России она только начала появляться, и стала доступной для всех чуть более 10 лет назад.


Громоздкие кирпичеобразные мобильники работавшие в форматах первого и второго поколений ушли в историю, уступив место смартфонам с 3G и 4G, лучшей голосовой связью и высокой скоростью интернета.

Почему связь называется сотовой? Потому что территория, на которой обеспечивается связь, разбивается на отдельные ячейки или соты, в центре которых располагаются базовые станции (БС). В каждой "соте" абонент получает одинаковый набор услуг в определенных территориальных границах. Это означает, что перемещаясь от одной "соты" к другой, абонент не чувствует территориальной привязанности и может свободно пользоваться услугами связи.

Очень важно, чтобы была непрерывность соединения при перемещении. Это обеспечивается благодаря так называемому хэндовер (Handover), при котором соединение установленное абонентом как бы подхватывается соседними сотами по эстафете, а абонент продолжает разговаривать или копаться в соцсетях.

Вся сеть делится на две подсистемы: подсистема базовых станций и подсистема коммутации. Схематически это выглядит так:

В середине "соты", как было сказано выше находится базовая станция, которая обычно обслуживает три "соты". Радиосигнал от базовой станции излучается через 3 секторные антенны, каждая из которых направлена на свою "соту". Бывает так, что на одну "соту" направлены сразу несколько антенн одной базовой станции. Это связано с тем, что сеть сотовой связи работает в нескольких диапазонах (900 и 1800 МГц). Кроме того, на данной базовой станции может присутствовать оборудование сразу нескольких поколений связи (2G и 3G).

Но на вышках БС Tele2 стоит оборудование только третьего и четвертого поколения - 3G/4G, так как компания решила отказаться от старых форматов в пользу новых, которые помогают избегать обрывов голосовой связи и обеспечивают более стабильный интернет. Завсегдатаи соцсетей поддержат меня в том, что в наше время скорость интернета очень важна, 100-200 кб/с уже не достаточно, как это было пару-тройку лет назад.

Наболее привычным местом размещения БС является башня или мачта, построенная специально для нее. Наверняка вы могли видеть красно-белые вышки БС где-то в отдаленности от жилых домов (в поле, на холме), или там, где поблизости нет высоких зданий. Как вот эта, которая видна из моего окна.

Однако, в условиях городской местности трудно найти место под размещение массивного сооружения. Поэтому в крупных городах базовые станции размещаются на зданиях. Каждая станция ловит сигнал от мобильных телефонов на удалении до 35 км.

Это антенны, само оборудование БС находится на чердаке, или в контейнере на крыше, которое представляет из себя пару железных шкафов.

Некоторые базовые станции расположены там, где вы даже не догадаетесь. Как например на крыше этой парковки.

Антенна БС состоит из нескольких секторов, каждый из которых принимает/отправляет сигнал в свою сторону. Если вертикальная антенна осуществляет связь с телефонами, то круглая соединяет БС с контроллером.

В зависимости от характеристик, каждый сектор может обслуживать до 72 звонков одновременно. БС может состоять из 6 секторов, и обслуживать до 432 звонков, однако обычно на станциях устанавливают меньше передатчиков и секторов. Сотовые операторы, такие как Tele2, предпочитают ставить больше БС для улучшения качества связи. Как мне сказали, здесь используется самое современное оборудование: базовые станции Ericsson, транспортная сеть - Alcatel Lucent.

От подсистемы базовых станций сигнал передается в сторону подсистемы коммутации, где и происходит установление соединения с нужным абоненту направлением. В подсистеме коммутации есть ряд баз данных, в которых хранятся сведения об абонентах. Кроме того эта подсистема отвечает за безопасность. Если сказать проще, то коммутатор выполняет те же функции, что и девушки операторы, которые раньше руками соединяли вас с абонентом, только сейчас все это происходит автоматически.

Оборудование для этой базовой станции спрятано в этом железном шкафу.

Кроме обычных вышек есть также и мобильные варианты базовых станций, размещенные на грузовиках. Их очень удобно использовать во время стихийных бедствий или в местах массового скопления людей (футбольные стадионы, центральные площади) на время праздников, концертов и различных мероприятий. Но, к сожалению, из-за проблем в законодательстве широкого применения они пока не нашли.

Для обеспечения оптимального покрытия радиосигналом на уровне земли, базовые станции проектируются специальным образом, потому несмотря на дальность в 35 км. сигнал не распространяется на высоту полета самолетов. Однако некоторые авиакомпании уже начали устанавливать на своих бортах небольшие базовые станции, обеспечивающие сотовую связь внутри самолета. Такая БС соединяется с наземной сотовой сетью с помощью спутникового канала. Система дополняется панелью управления, которая позволяет экипажу включать и выключать систему, а также отдельные типы услуг, например, выключать голос на ночных рейсах.

Также я заглянул в офис Tele2, чтобы увидеть как специалисты контролируют качество сотовой связи. Если несколько лет назад такая комната была бы увешана до потолка мониторами показывающими данные сети (загруженность, аварии сети, и т.п.) то со временем надобность в таком количестве мониторов отпала.

Технологии со временем сильно развились и достаточно вот такой небольшой комнаты с несколькими специалистами, чтобы наблюдать за работой всей сети в Москве.

Немного видов из офиса Tele2.

На совещании сотрудников компании обсуждаются планы по захвату столицы) С начала стройки до сегодняшнего дня Tele2 успел покрыть своей сетью всю Москву, и постепенно завоевывает Подмосковье, запуская более 100 базовых станций еженедельно. Так как я живу теперь в области, мне очень важно. чтобы эта сеть как можно быстрее пришла в мой городок.

В планах компании на 2016 г. обеспечение высокоскоростной связи в метро на всех станциях, на начало 2016 связь Tele2 присутствует на 11 станциях: связь стандарта 3G/4G на метро «Борисово», «Деловой центр», «Котельники», «Лермонтовский проспект», «Тропарево», «Шипиловская», «Зябликово», 3G: «Белорусская» (Кольцевая), «Спартак», «Пятницкое шоссе», «Жулебино».

Как я говорил выше, Tele2 отказалась от формата GSM в пользу стандартов третьего и четвертого поколения - 3G/4G. Это позволяет устанавливать базовые станции 3G/4G с большей частотой (например, внутри МКАД БС стоят на расстоянии около 500 метров друг от друга), чтобы обеспечивать более стабильную связь и высокую скорость мобильного интернета, чего не было в сетях предыдущих форматов.

Из офиса компании я в компании инженеров Никифора и Владимира отправляюсь на одну из точек, где им нужно замерить скорость связи. Никифор стоит напротив одной из мачт, на которой установлено оборудование для обеспечения связи. Если приглядитесь, то заметите чуть далее слева еще одну такую мачту, с оборудованием других сотовых операторов.

Как это ни странно, но сотовые операторы часто разрешают своим конкурентам использовать свои башенные сооружения для размещения антенн (естественно на взаимовыгодных условиях). Это вызвано тем, что строительство башни или мачты - дорогое удовольствие, и такой обмен позволяет сэкономить немало средств!

Пока мы замеряли скорость связи, Никифора несколько раз прохожие бабушки и дядьки спросили не шпион ли он)) "Да, глушим радио "Свобода"!).

Оборудование на самом деле выглядит необычно, по его виду можно предположить все что угодно.

У специалистов компании немало работы, если учесть, что в Москве и области у компании более 7тыс. базовых станций: из них порядка 5тыс. 3G и около 2тыс. базовых станций LTE, а за последнее время количество БС увеличилось еще примерно на тысячу.
Всего за три месяца в Подмосковье было выведено в эфир 55% от общего количества новых базовых станций оператора в регионе. В настоящий момент компания обеспечивает качественное покрытие территории, на которой проживает более 90% населения Москвы и Московской области.
Кстати, в декабре сеть 3G Tele2 была признана лучшей по качеству среди всех столичных операторов.

Но я решил лично проверить насколько хороша связь у Tele2, потому приобрел симку в ближайшем ко мне торговом центре на м.Войковская, с самым простым тарифом "Очень черный" за 299 р (400 смс/минут и 4 ГБ). Кстати, у меня был подобный билайновский тариф, который на 100 рублей дороже.

Проверил скорость не отходя далеко от кассы. Прием - 6.13 Mbps, передача - 2.57 Mbps. Учитывая, что я стою в центре торгового центра это неплохой результат, связь Tele2 хорошо проникает сквозь стены большого ТЦ.

На м.Третьяковская. Прием сигнала - 5.82 Mbps, передача - 3.22 Mbps.

И на м.Красногвардейская. Прием - 6.22 Mbps, передача - 3.77 Mbps. Замерил у выхода из метро. Если принять во внимание, что это окраина Москвы, очень даже прилично. Считаю, что вполне приемлемая связь, уверенно можно сказать, что стабильная, если учитывать, что Tele2 появилась в Москве всего пару месяцев назад.

В столице стабильная связь Tele2 есть, это хорошо. Очень надеюсь, что они побыстрее придут в область и я смогу в полной мере пользоваться их связью.

Теперь и вы знаете как работает сотовая связь!

Если у вас есть производство или сервис, о котором вы хотите рассказать нашим читателям, пишите пишите мне - Аслан ([email protected] ) и мы сделаем самый лучший репортаж, который увидят не только читатели сообщества, но и сайта http://ikaketosdelano.ru

Подписывайтесь также на наши группы в фейсбуке, вконтакте, одноклассниках и в гугл+плюс , где будут выкладываться самое интересное из сообщества, плюс материалы, которых нет здесь и видео о том, как устроены вещи в нашем мире.

Жми на иконку и подписывайся!

Телефонная связь – это передача речевой информации на дальние расстояния. С помощью телефонии люди имеют возможность общаться в режиме реального времени.

Если в момент возникновения технологии способ передачи данных существовал только один – аналоговый, то в настоящий момент успешно применяются самые разные системы коммуникации. Телефонная, спутниковая и мобильная связь, а также IP-телефония обеспечивают надёжный контакт между абонентами, будь они даже в разных концах земного шара. Как работает телефонная связь при использовании каждого из методов?

Старая добрая проводная (аналоговая) телефония

Под термином «телефонная» связь чаще всего понимают связь аналоговую, способ передачи данных, ставший привычными за без малого полтора столетия. При использовании такой , информация передаётся непрерывно, без промежуточной кодировки.

Соединение двух абонентов регулируется набором номера, а затем общение ведётся посредством передачи сигнала от человека к человеку по проводам в самом буквальном смысле этого слова. Соединяют абонентов уже не телефонистки, а роботы, что значительно упростило и удешевило процесс, однако принцип работы аналоговых сетей связи остался прежним.

Мобильная (сотовая) связь

Абоненты операторов сотовой связи ошибочно считают, что «перерезали провод», соединяющий их с телефонными станциями. С виду всё так и есть – человек может передвигаться куда угодно (в рамках покрытия сигналом), не прерывая разговор и не теряя контакт с собеседником, да и <подключить телефонную связь стало легче и проще.

Однако если разобраться, как работает мобильная связь, мы обнаружим не так уж много отличий от работы аналоговых сетей. Сигнал на самом деле «витает в воздухе», вот только от телефона звонящего он попадает на приёмопередатчик, который, в свою очередь, связывается с ближайшим к вызываемому абоненту аналогичным оборудованием…посредством оптиковолоконных сетей.

Этап радиопередачи данных охватывает лишь путь сигнала от телефона к ближайшей базовой станции, которая связана с другими коммуникационными сетями вполне традиционным способом. Как работает сотовая связь, ясно. Каковы же её плюсы и минусы?

Технология обеспечивает большую мобильность по сравнению с аналоговой передачей данных, однако несёт в себе всё те же риски нежелательных помех и возможности прослушивания линий.

Путь сотового сигнала

Рассмотрим подробнее, каким именно способом сигнал достигает вызываемого абонента.

  1. Пользователь набирает номер.
  2. Его телефон устанавливает радиосвязь с ближайшей базовой станцией. Они расположены на высотных домах, промышленных сооружениях и вышках. Каждая станция состоит из приемо-передающих антенн (от 1 до 12) и блока управления. Базовые станции, которые обслуживают одну территорию, соединены с контроллером.
  3. От блока управления базовой станции сигнал по кабелю передается на контроллер, а оттуда, тоже по кабелю, - на коммутатор. Это устройство обеспечивает вход и выход сигнала на различные линии связи: междугородней, городской, международной, других мобильных операторов. В зависимости от размеров сети в ней могут быть задействованы как один, так и несколько коммутаторов, соединенных между собой при помощи проводов.
  4. От «своего» коммутатора сигнал по высокоскоростным кабелям передается на коммутатор другого оператора, причем последний легко определяет, в зоне действия какого контроллера находится абонент, которому адресован звонок.
  5. Коммутатор вызывает нужный контроллер, тот пересылает сигнал на базовую станцию, которая «опрашивает» мобильный телефон.
  6. Вызываемому абоненту поступает входящий звонок.

Такая многослойная структура сети позволяет равномерно распределить нагрузку между всеми ее узлами. Тем самым уменьшается вероятность отказа оборудования и обеспечивается бесперебойная связь.

Как работает сотовая связь, ясно. Каковы же её плюсы и минусы? Технология обеспечивает большую мобильность по сравнению с аналоговой передачей данных, однако несёт в себе всё те же риски нежелательных помех и возможности прослушивания линий.

Спутниковая связь

Давайте посмотрим, как работает спутниковая связь, высшая на сегодняшний день ступень развития радиорелейной связи. Ретранслятор, помещённый на орбиту, способен охватывать огромную площадь поверхности планеты в одиночку. Сеть базовых станций, как в случае с сотовой связью, уже не нужна.

Абонент–физическое лицо получает возможность путешествовать практически без ограничений, оставаясь на связи даже в тайге или в джунглях. Абонент–лицо юридическое может привязать к одной антенне-ретранслятору (это ставшая уже привычной «тарелка») целую мини-АТС, однако при этом следует учитывать объём входящих и исходящих, а также размер файлов, которые необходимо переслать.

Минусы технологии:

  • серьёзная метеозависимость. Магнитная буря или другой катаклизм способны надолго оставить абонента без связи.
  • если что-то физически сломалось на спутниковом ретрансляторе, срок, который пройдёт до полного восстановления функциональности, растянется очень надолго.
  • стоимость услуг связи без границ чаще всего превышает более привычные счета. Выбирая способ связи, важно учесть, насколько необходима вам именно столь функциональная связь.

Спутниковая связь: за и против

Главная особенность «спутника» состоит в том, что он обеспечивает абонентам независимость от наземных линий связи. Преимущества такого подхода очевидны. К ним относятся:

  • мобильность оборудования. Его можно развернуть в очень короткие сроки;
  • возможность быстро создавать обширные сети, охватывающие большие территории;
  • связь с труднодоступными и отдаленными территориями;
  • резервирование каналов, которые можно задействовать в случае поломки наземной связи;
  • гибкость технических характеристик сети, позволяющих адаптировать ее практически под любые требования.

Минусы технологии:

  • серьёзная метеозависимость. Магнитная буря или другой катаклизм способны надолго оставить абонента без связи;
  • если что-то физически вышло со строя на спутниковом ретрансляторе, срок, который пройдёт до полного восстановления функциональности системы, растянется надолго;
  • стоимость услуг связи без границ чаще всего превышает более привычные счета.

Выбирая способ связи, важно учесть, насколько необходима вам именно столь функциональная связь.

"В любой области науки профессора предпочитают свои собственные
теории истине, потому что их теории - их личная собственность, а истина - всеобщее достояние"
Чарлз Колтон

Принцип построения сети и базовые элементы сети

Изучение любого предмета начинается с основ, что является тем базисом, на котором выстраивается иерархия древа знаний. Без этого любая, даже самая хитрая структура рассыплется, как карточный домик. Только глупцы начинают строить дом с крыши… Хотя если речь идет о метростроителях или шахтерах, то это правило не действует. Но и их работа не сводится к бездумному перебрасыванию земельных недр на железные вагонетки. Один наш знакомый самостоятельно знакомился с каждым событием или формой, начиная с азов. Любой разговор с ним, на самую пустяковую тему мог затянуться на несколько часов. Он тщательно обрабатывал свою жертву, методично накачивая ее мозг максимумом информации о предмете разговора. Иными словами, если бы вы спросили у него о принципе работы эмиттерного повторителя, то изначально вам пришлось бы прослушать часовую лекцию о создании и эволюции полупроводников. Занудство? Большинству из нас может показаться именно так. Однако настоящий фундаментальный подход к знаниям лежит именно в этом. Можно долго и заумно говорить о сложных вещах, но если вы не имеете базовых знаний, то все сказанное так же красиво и быстротечно, как и брызги шампанского. Сегодня мы выстроим определенный базис знаний о сотовой связи. Мы расскажем об основах построения современной мобильной телефонной сети.

Сети сотовой связи

Телефонная связь так глубоко проникла в нашу среду, что мы не представляем жизнь без нее. Поднять трубку, набрать номер и услышать голос друга или близкого человека? Что может быть проще? Но за этим стоит огромный труд физиков, технологов, электриков и людей других специальностей. В 1947 году произошло событие, которое послужило отправной точкой для создания сотовой связи. Сотрудник Bell Laboratories, Д. Ринг, во внутреннем меморандуме выдвинул идею сотового принципа организации сетей подвижной связи. Инженер предложил основные идеи, которые по сей день лежат в основе современных сотовых сетей. С одной стороны, сотовая связь проста и понятна, как движение колеса, но как только мы начинаем рассматривать ее более пристально, то открываются всевозможные технические тонкости, подкрепленные десятками патентов и авторских свидетельств. На расстоянии эти подробности теряются и опять открывается вид неделимого целого - комплекса сотовой связи. Итак, давайте обсудим построение системы сотовой связи. Следует обозначить основные проблемы, с которыми мы столкнемся при ее создании. Для создания сотовой сети нужно получить набор частот или частотный диапазон. Именно в нем базовая станция будет общаться с вашим мобильным терминалом. Основным принципом работы сотовых сетей считают принцип повторного использования частот. Именно он позволяет существенно повысить ее емкость и покрывать практически неограниченное пространство, применяя при этом конечный набор частот. Обратим внимание на рисунок.

В нашем распоряжении есть три частоты (f1, f2, f3). В первой соте (ячейке) мы используем частоту f1. Во второй соте (ячейке) использовать ту же частоту, то есть f1, мы не можем из-за явления интерференции. Интерференция – физическое явление, которое возникает при наложении двух (или более) волн от одинаковых источников и приводит к усилению или ослаблению амплитуды волны. Поэтому борьба с интерференцией – одна из основных задач при частотном планировании, то есть распределении частот по сотам (ячейкам). Итак, поскольку во второй соте (ячейке) мы не можем использовать частоту f1 - используем частоту f2. В третьей соте мы используем частоту f3, а в четвертой соте мы опять можем использовать частоту f1. Картина предельно проста. Однако на практике инженеры сталкиваются с серьезными проблемами. Действительно, нарисовать границы сот тонкими прямыми линиями удается только на бумаге. Реальный ландшафт, особенно городской, накладывает серьезные ограничения на геометрию зоны покрытия каждой базовой станции. Поэтому фактическое покрытие можно проверить только экспериментальным путем. Так как количество точек в пространстве бесконечно, то проверить их все невозможно. Даже если аппроксимировать каждое место пространства в зоне действия базовой станции до кубического метра, то работа невыполнима. Отсюда появление белых пятен на карте покрытия и мест с активной интерференцией, которая ведет к помехам. В соответствии с рекомендациями CEPT, стандарт GSM-900 предусматривает работу передатчиков в двух диапазонах частот. Полоса частот (частоты на которых передается информация) 890–915 МГц используется для передачи информации с мобильной станции (мобильный телефон) на базовую станцию (uplink). Полоса частот 935–960 МГц – для передачи информации с базовой станции на мобильную станцию (downlink). При переключении каналов во время сеанса связи дуплексный разнос (разность между частотами передачи и приема) постоянен и равен 45 МГц. Разнос частот между соседними каналами связи составляет 200 кГц. Таким образом, в отведенной для приема/передачи полосе частот шириной 25 МГц размещаются 124 канала связи (124 канала для всех операторов GSM данного региона). Кроме этого, в нашей стране хорошо известен еще один популярный диапазон - GSM-1800. Полоса частот передачи информации от мобильной станции (телефона) к базовой станции (uplink) составляет 1710–1785 МГц и полоса частот для передачи информации от базовой станции к мобильной станции (downlink) составляет 1805–1880 МГц. Дуплексный разнос- 95 МГц. В полосе частот шириной 75 МГц размещается 374 канала связи. Использование GSM-1800 целесообразно в городских условиях. Плотность абонентов тут больше, и поэтому дополнительная канальность приходится очень кстати. Кроме того, электромагнитные колебания высокой частоты имеют лучшую проникающую способность через всевозможные технические строения, коих в городах великое множество. В чем прелесть GSM-900? Так как диапазон этот живет, то у него есть свои преимущества. Главным достоянием можно считать его достаточную чистоту и доступность в силу родоначальности. С этим можно спорить. Однако мы считаем, что это так. Разумеется, в нем сидят и военные, и специальные службы, но все знают, что там, подобно локомотиву, мчится GSM. Это огромная машина, которая практически срослась с государством и дает ему очень много денег. Кроме этого, GSM-900 лучше работает на дальних расстояниях. К этому вопросу мы вернемся чуть позже. Обсуждение других частотных диапазонов лежит вне поля наших интересов, так как они не прижились в России и Европе. Хочется заметить только одно – там нет существенных отличий. Все практически так же. Только другой частотный диапазон. Итак, мы обсудили основную рабочую среду сотовой сети GSM. Настало время препарировать ее содержимое, которое расскажет нам, что, где и за что отвечает.

Основные элементы GSM-сети

Структура и номенклатура – два понятия ведут нас к пониманию любой сущности. Представьте, что у вас в руках одна из самых важных шифровок, которая раскрывает смерть президента Джона Кеннеди. Ценность этой депеши прямо пропорциональна тому, владеете ли вы кодом от нее. Или предположим, сидите вы в ресторане, а официант, который подошел к вам, говорит только на редком африканском наречии. В том и другом случае важно понимать, о чем с вами говорят. Поэтому мы начинаем разговор об основных элементах сети GSM. Структура сети GSM включает в себя:
  • BSS (Base Station Subsystem) - подсистема базовых станций.
  • SSS (Switching Subsystem) - подсистема коммутации
  • OSS (Operation Subsystem) - подсистема эксплуатации и технического обслуживания.

Итак, схема логически разбивается на три квадрата. Каждый из них представляет собой замкнутую систему, которая выполняет определенную, отведенную для нее роль. Опыт показал, что такое разделение целесообразно, с точки зрения контроля, отслеживания ошибок и сбоев, и строительства сети. Нам предстоит разобрать все элементы этой схемы. Для начала возьмем в рассмотрение подсистему базовых станций BSS (Base Station Subsystem) . Она состоит из:

  • - базовые приемо-передающие станции;
  • - контроллер базовых станций;
  • - транскодер.
Перед нами практически интерфейс, с которым говорит ваш сотовый телефон. Он помогает «вести» ваш мобильный аппарат на территории каждой базовой станции. Каждая BTS (Base Transceiver Station) – (базовая приемо-передающая станция) обеспечивает для работы сети следующие функции:
  • радиопокрытие;
  • получение и передачу данных и служебной информации от/к мобильной станции;
  • управление мощностью мобильной станции;
  • контроль качества передачи информации и т.д.
Базовые приемо-передающие станции бывают разных видов. Прежде всего, их можно разделять по принципу локации: стационарная и передвижная. В нашей стране практикуется установка только стационарных БС. С одной стороны, это простой способ, с точки зрения планирования сот и инфраструктуры (подвод электричества). С другой стороны, перегрузки сети часто связывают с тем, что в одно время на одной соте находятся и одновременно говорят очень много абонентов. Например, всевозможные городские праздники давно стали головной болью для сотовых операторов. Разумно было подвести одну или две передвижных базовых станций, развернуть генераторы и дать народу связь. Однако не все так просто. Вернее, с технической стороны тут нет непреодолимых проблем, а с юридической - полный казус. Насколько известно, сейчас в нашей стране нет ни одного правового документа, который регламентирует развертывание и эксплуатацию передвижных базовых станций. Возможно, в будущем эта проблема будет решена. Сотовые операторы любят говорить о количестве своих базовых станций. Однако не стоит считать, что чем больше у компании БС, тем больше территория покрытия. Это утверждение верно лишь частично.

Как мы уже писали выше, основу базовой станции GSM составляют приемопередатчики. Они позволяют оператору использовать до восьми каналов. Стандарт GSM говорит, что для управления и обмена информацией необходимы два канала. Количество передатчиков на каждой базовой станции может достигать 24 штук. Это зависит от типа базовой станции и ее назначения. Отметим, что одна базовая станция может конфигурировать до четырех сот. Эксперименты по интерференции волн и создании удаленных сот полностью провалены. О конфигурировании сотовых станций мы поговорим в следующем материале, когда будем рассматривать интерфейсы и принципы GSM-связи. Установка базовых станций и расчет количества передатчиков на них - это отдельное искусство. Прежде всего, надо провести радиоразведку территории. Например, недопустим случай, когда вы высоко подняли одну из базовых станций и обеспечили хорошую связь с нее на большие расстояния, где уже действуют другие соты. Мобильники повально будут вешаться на соту с хорошим сигналом и «испортят» ее нормальную работу. Очень важным надо считать количество передатчиков на одной БС. Если соотношение БС/передатчик окажется меньше 1:5, то очень часто сеть будет выдавать сигнал «перегрузка». Любая базовая станция оборудована дополнительной радиорелейной связью. Это сделано для приложения дополнительных коммуникационных мостов внутри сети. Частотный диапазон для этой связи составляет 3-40 ГГц. Мощность передатчиков может составлять десятки Вт и регламентируется специальными документами. Для связи с мобильным телефоном передатчик базовой станции излучает мощность от пяти до десяти Вт. Все вы, наверное, обращали внимание на антенны передатчиков базовых станций. Их хорошо видно на вышках. В нашей стране мы встречали только два типа антенн:

  • слабонаправленные с круговой диаграммой направленности (ДН) в горизонтальной плоскости (тип "Omni")
  • направленные (секторные) с углом раствора (шириной) основного лепестка ДН в горизонтальной плоскости обычно 60 или 120 градусов
Настал момент перейти к другому важному элементу нашей схемы - BSC (Base Station Controller) - контроллер базовых станций. Это мощный компьютер, обеспечивающий управление работой базовых станций (BTS) и осуществляющий контроль работоспособности всех блоков базовой станции (BTS), а также отвечающий за процедуру handover (передача обслуживания мобильной станции от одной базовой станции к другой в режиме разговора). Контроллер базовых станций управляет одновременно несколькими базовыми станциям (BTS). Их количество определяется, главным образом, объемами потоков вызовов, то есть телефонной нагрузкой. Например, в густонаселенной территории может располагаться большое количество BTS, подключенных к нескольким BSC. Последним элементом первой подсистемы является TRAU (Transcoding Rate Adapter Unit) - транскодер. Он отвечает за преобразование скорости передачи данных между BSS и SSS. Скорость передачи информации в подсистеме базовых станций (BSS) равна 16 кбит/с, а в подсистеме коммутации – 64 кбит/с. Таким образом, основная задача транскодера преобразовывать скорость из 16 кбит/с в 64 кбит/с, и наоборот. Если проводить аналогии между сотовой сетью и человеческим организмом, то, безусловно, подсистема коммутации (SSS) служит телом. Сюда стекаются сигналы из «головы», «ног» и «рук». Существует ошибочное представление, что подсистема коммуникации должна находиться в середине зоны покрытия. Это так же верно, как то, что рабочая столовая должна быть в сердце завода. Давайте рассмотрим структуру SSS (Switching Subsystem) - подсистемы коммутации. Она состоит из:
  • – центра коммутации;
  • HLR (Home Location Register) – домашнего регистра местоположения;
  • – гостевого регистра местоположения;
  • AuC (Authentication Center) – центра аутентификации.
MSC (Mobile Switching Center) - центр коммутации. Это мозговой центр и одновременно диспетчерский пункт системы сотовой связи, где замыкаются потоки информации о вызовах абонентов, где осуществляется выход на другие сети. Основные назначения MSC:
  • маршрутизация (направление) сигнала, то есть анализ номера для исходящих и входящих вызовов;
  • установление, контроль и разъединение соединений.
Также в центре коммутации формируются CDR-файлы (Call Data Recorder) для предоставления в биллинговую систему. Они содержат информацию о месте и времени начала и завершения звонка. Как правило, при организации сети стандарта GSM один или два MSC используются на территории, где проживает до одного миллиона пользователей (включая потенциальных). MSC осуществляет «мониторинг» мобильных станций (мобильных телефонов), используя регистры: HLR (Home Location Register) - домашний регистр местоположения
VLR (Visitor Location Register) - гостевой регистр местоположения. HLR (Home Location Register) - домашний регистр местоположения представляет собой компьютерную базу данных о домашних абонентах – пользователях мобильной связи, вне зависимости от состояния мобильного телефона (вкл. или выкл.). В ней содержатся опознавательные номера и адреса, а также параметры подлинности абонентов, список услуг связи. Записанные данные позволяют абоненту использовать определенные основные и дополнительные услуги, обеспечиваемые системой. В HLR также хранится та часть информации о местоположении мобильной станции, которая позволяет центру коммутации (MSC) доставить вызов этой станции. Домашний регистр местоположения (HLR) содержит международный идентификационный номер подвижного абонента (IMSI-International Mobile Subscriber Identity). Он используется для опознавания мобильной станции в центре аутентификации (AuC). К данным, содержащимся в HLR, дистанционный доступ имеют все MSC и VLR. Если в сети имеются несколько HLR, то каждый HLR представляет определенную часть общей базы данных сети об абонентах. VLR (Visitor Location Register) - гостевой регистр местоположения содержит примерно такие же данные, как и HLR, но только об активных абонентах, то есть о тех, кто в данный момент находится в зоне действия коммутатора (MSC), к которому принадлежит VLR. Количество гостевых регистров местоположения (VLR) равно количеству коммутаторов (MSC). Каждый гостевой регистр местоположения приписан к определенному коммутатору. VLR содержит базу данных о роумерах (роумеры- абоненты другой системы GSM, временно использующие услуги данной системы в рамках процедуры «роуминга»), находящихся в зоне VLR. Итак, подсистема коммуникации берет на себя очень много функций. Центр коммутации GSM-связи напрямую обслуживает группу сот и обеспечивает все виды соединений (голосовые, передача сообщений и передача данных). Теоретически MSC повторяет работу коммутационной станции ISDN. Он представляет собой интерфейс между фиксированными сетями и сетью подвижной связи. Конечно, вам не удастся работать по принципу «Барышня? Соедините…». Однако технически этот шлюз не многим сложнее современных коммутаторов, которые устанавливаются для стационарных сетей. Он обеспечивает маршрутизацию вызовов и функции управления вызовами. Однако его важное отличие в том, что при этом ему приходится решать проблемы коммутации радиоканалов. Из-за этого достигается непрерывность связи при перемещении подвижной станции из соты в соту. Кроме этого, центр коммуникации решает о переключении рабочих каналов в соте при появлении помех или неисправностях. Огромные кипы служебной информации непрерывным потоком стекают с него в центр управления и обслуживания. Это статистические данные, необходимые для контроля работы и оптимизации сети. Помимо этого, MSC поддерживает процедуры безопасности, применяемые для управления доступами к радиоканалам. Вы слышали о роуминге? Думаем, что да. Когда два оператора договариваются о роуминге своих абонентов, то это значит, что они могут пользоваться HLR (Home Location Register) и VLR (Visitor Location Register) совместно. Вернее, каждый из них получает доступ к гостевому регистру друг друга. С домашним регистром все немного сложнее. Более детально мы поговорим об этом в следующих главах. Небольшим квадратом на схеме к домашнему регистру местоположения примостился центр аутентификации (AuC). AuC (Authentication Center) - центр аутентификации формирует параметры для процедуры аутентификации и определяет ключи шифрования мобильных станций абонентов. Процедура аутентификации – процедура подтверждения подлинности абонента (действительности, законности, наличия прав на пользование услугами сотовой связи) сети GSM. Выполнение данной процедуры исключает наличие несанкционированных пользователей («сотовых двойников») услугами GSM. На данный момент работа этого блока в сетях GSM доведена до фантастического уровня. Разумеется, это только машина, управляемая программой, которую писал человек. Однако годы работы не прошли бесследно. Центр аутентификации обмануть извне системы практически невозможно. Попытки клонировать GSM-аппараты практически повсеместно потерпели крах. Теоретическая возможность осталась. Однако экономически такой двойник абсолютно не обоснован. Нам осталось познакомиться с последней подсистемой - эксплуатации и технического обслуживания (OSS). OSS (Operation Subsystem) - подсистема эксплуатации и технического обслуживания обеспечивает контроль качества работы сети и управление ее компонентами. OSS может устранять неисправности сети автоматически или при активном вмешательстве персонала; позволяет производить управление нагрузкой сети, обеспечивать проверку состояния оборудования. OSS состоит из двух компонентов:
  • - центр эксплуатации и технического обслуживания;
  • - центр управления сетью.
Несколько слов об их функциях: OMC (Operation and Maintenance Centre) - центр эксплуатации и технического обслуживания, выполняющий функции текущего руководства функционирования сети, ее технического обслуживания, обновления системы, проведения операций по загрузке команд и программного обеспечения на BSS, MSC, HLR, VLR и AuC. NMC (Network Management Centre) - центр управления сетью. Это центральный пункт наблюдения за сетью GSM и анализа ее функционирования.

Заключительное слово

На этом мы заканчиваем знакомство с мобильной связью GSM. Выражаем благодарность компании