В 2016 году наконец сбылись надежды на полноценную смену поколений в графических процессорах, которую раньше тормозило отсутствие производственных возможностей, необходимых для того, чтобы выпустить чипы с существенно более высокой плотностью транзисторов и тактовыми частотами, чем позволял проверенный техпроцесс 28 нм. 20-нанометровая технология, на которую мы рассчитывали два года тому назад, оказалась коммерчески невыгодной для столь крупных микросхем, как дискретные GPU. Т. к. TSMC и Samsung, которые могли бы выступить подрядчиками для AMD и NVIDIA, не использовали FinFET при норме 20 нм, потенциальное увеличение производительности на ватт по сравнению с 28 нм оказалось таковым, что обе компании предпочли подождать массового внедрения 14/16-нм норм, уже с применением FinFET.

Однако годы томительного ожидания прошли, и теперь мы можем оценить, как производители GPU распорядились возможностями обновленного техпроцесса. Как в очередной раз показала практика, «нанометры» сами по себе не гарантируют высокой энергоэффективности чипа, поэтому новые архитектуры NVIDIA и AMD оказались очень непохожи по этому параметру. А дополнительную интригу внес тот факт, что компании больше не пользуются услугами одной фабрики (TSMC), как это было в прошлые годы. AMD предпочла GlobalFoundries для производства GPU линейки Polaris на базе технологии 14 нм FinFET. NVIDIA, с другой стороны, по-прежнему сотрудничает с TSMC, обладающей процессом 16 нм FinFET, в работе над всеми чипами Pascal, за исключением младшего GP107 (который выпускает Samsung). Именно линия Samsung 14 нм FinFET была в свое время лицензирована GlobalFoundries, поэтому GP107 и его соперник Polaris 11 дают нам удобную возможность сравнить инженерные достижения AMD и NVIDIA на схожей производственной базе.

Впрочем, не будем преждевременно погружаться в технические подробности. В целом предложения обеих компаний на базе GPU нового поколения выглядят следующим образом. NVIDIA создала полную линейку ускорителей архитектуры Pascal на основе трех GPU потребительского класса — GP107, GP106 и GP104. Однако место флагманского адаптера, который наверняка получит имя GeForce GTX 1080 Ti, сейчас вакантно. Кандидатом на эту позицию является карта с процессором GP102, который пока применяется только в «просьюмерском» ускорителе NVIDIA TITAN X. И наконец, главной гордостью NVIDIA стал чип GP100, который компания, по всей видимости, даже не собирается внедрять в игровые продукты и оставила для ускорителей вычислений Tesla.

Успехи AMD пока скромнее. Были выпущены два процессора семейства Polaris, продукты на основе которых относятся к нижней и средней категориям игровых видеокарт. Верхние эшелоны займут грядущие GPU семейства Vega, в которых, как ожидается, будет представлена всесторонне модернизированная архитектура GCN (в то время как Polaris с этой точки зрения не столь существенно отличается от 28-нанометровых чипов Fiji и Tonga).

NVIDIA Tesla P100 и новый TITAN X

Стараниями Дженсена Хуана, бессменного руководителя NVIDIA, компания уже позиционирует себя как производителя вычислительных процессоров широкого назначения в не меньшей степени, чем производителя игровых GPU. Сигналом того, что NVIDIA воспринимает суперкомпьютерный бизнес как никогда серьезно, стало разделение линейки графических процессоров Pascal на игровые позиции, с одной стороны, и вычислительные, с другой.

Как только техпроцесс 16 нм FinFET вошел в строй на TSMC, NVIDIA направила первые усилия на выпуск суперкомпьютерного чипа GP100, который дебютировал раньше, чем потребительские продукты линейки Pascal.

Отличительными свойствами GP100 стало беспрецедентное число транзисторов (15,3 млрд) и шейдерных ALU (3840 ядер CUDA). Кроме того, это первый ускоритель, который оснащен памятью типа HBM2 (объемом 16 Гбайт), объединенной с GPU на кремниевой подложке. GP100 используется в составе ускорителей Tesla P100, поначалу ограниченных сферой суперкомпьютеров в силу специального форм-фактора с шиной NVLINK, но впоследствии NVIDIA выпустила Tesla P100 и в стандартном формате платы расширения PCI Express.

Изначально эксперты предполагали, что P100 может появиться в игровых видеокартах. NVIDIA, видимо, не отрицала такую возможность, ведь чип обладает полноценным конвейером для рендеринга 3D-графики. Но теперь очевидно, что он вряд ли когда-либо выйдет за пределы вычислительной ниши. Для графики у NVIDIA есть родственный продукт — GP102, который обладает таким же набором шейдерных ALU, блоков наложения текстур и ROP, как и GP100, но лишен балласта в виде большого количества 64-битных ядер CUDA, не говоря уже о прочих архитектурных изменениях (меньше планировщиков, урезанный кеш L2 и пр.). В результате получилось более компактное (12 млрд транзисторов) ядро, что, в совокупности с отказом от памяти HBM2 в пользу GDDR5X, позволило NVIDIA распространить GP102 на более широкий рынок.

Сейчас GP102 зарезервирован для просьюмерского ускорителя TITAN X (не путать с GeForce GTX TITAN X на базе чипа GM200 архитектуры Maxwell), который позиционируется как плата для вычислений сниженной точности (в диапазоне от 8 до 32 бит, среди которых 8 и 16 — излюбленное NVIDIA глубинное обучение) даже в большей степени, чем для игр, хотя состоятельные геймеры могут приобрести видеокарту по цене $1 200. Действительно, в наших игровых тестах TITAN X не оправдывает свою стоимость при 15-20-процентном преимуществе перед GeForce GTX 1080, но на помощь приходит оверклокинг. Если сравнивать разогнанные GTX 1080 и TITAN X, то последний окажется уже на 34% быстрее. Впрочем, новый игровой флагман на базе GP102, скорее всего, будет иметь меньше активных вычислительных блоков либо потеряет поддержку каких-либо вычислительных функций (либо и то и другое вместе).

В целом выпустить столь массивные GPU, как GP100 и GP102, на раннем этапе освоения техпроцесса 16 нм FinFET — большое достижение для NVIDIA, особенно если принять в расчет трудности, с которыми столкнулась компания в период 40 и 28 нм.

NVIDIA GeForce GTX 1070 и 1080

Линейку игровых ускорителей GeForce 10-й серии NVIDIA развернула в привычной для себя последовательности — от самых мощных моделей к более бюджетным. GeForce GTX 1080 и другие геймерские карты архитектуры Pascal, выпущенные впоследствии, наиболее ярко показали, что NVIDIA в полной мере реализовала возможности техпроцесса 14/16 нм FinFET, чтобы сделать микросхемы более плотными и энергоэкономичными.

Кроме того, создавая Pascal, NVIDIA не только повысила производительность в различных расчетных задачах (как показал пример GP100 и GP102), но и дополнила архитектуру чипов Maxwell функциями, оптимизирующими рендеринг графики.

Кратко отметим основные нововведения:

  • улучшенная компрессия цвета с соотношениями вплоть до 8:1;
  • функция Simultaneous Multi-Projection геометрического движка PolyMorph Engine, позволяющая за один проход создавать вплоть до 16 проекций геометрии сцены (для VR и систем с несколькими дисплеями в конфигурации NVIDIA Surround);
  • возможность прерывания (preemption) в процессе исполнения draw call (при рендеринге) и потока команд (при вычислениях), которая вместе с динамическим распределением вычислительных ресурсов GPU обеспечивает полноценную поддержку асинхронных вычислений (Async Compute) — дополнительного источника быстродействия в играх под API DirectX 12 и сниженной латентности в VR.

Последний пункт особенно интересен, т. к. чипы Maxwell технически были совместимы с асинхронными вычислениями (одновременная работа с вычислительной и графической очередью команд), но производительность в таком режиме оставляла желать лучшего. Асинхронные вычисления в Pascal работают так, как нужно, позволяя более эффективно загружать GPU в играх с отдельным потоком для расчетов физики (хотя, надо признать, для чипов NVIDIA проблема полной загрузки шейдерных ALU стоит не столь остро, как для GPU от AMD).

Процессор GP104, который используется в GTX 1070 и GTX 1080, является преемником GM204 (чипа второго эшелона в семействе Maxwell), однако NVIDIA добилась столь высоких тактовых частот, что быстродействие GTX 1080 превышает показатели GTX TITAN X (на основе более крупного GPU) в среднем на 29%, и все это в рамках более консервативного теплового пакета (180 против 250 Вт). Даже GTX 1070, «порезанный» намного сильнее, чем в свое время был «порезан» GTX 970 по сравнению с GTX 980 (кроме того, в GTX 1070 используется память GDDR5 вместо GDDR5X в GTX 1080), все еще на 5% быстрее, чем GTX TITAN X.

NVIDIA обновила контроллер дисплея в Pascal, который теперь совместим с интерфейсами DisplayPort 1.3/1.4 и HDMI 2.b, а значит — позволяет выводить по одному кабелю картинку с повышенным разрешением или частотой обновления — вплоть до 5К при 60 Гц либо 4К при 120 Гц. 10/12-битное представление цвета обеспечивает поддержку динамического диапазона (HDR) на немногочисленных пока экранах, обладающих такой возможностью. Выделенный аппаратный блок Pascal способен кодировать и декодировать видео формата HEVC (H.265) с разрешением вплоть до 4К, 10-битным цветом (12 бит при декодировании) и частотой 60 Гц.

Наконец, в Pascal ушли ограничения, свойственные прошлой версии шины SLI. Разработчики подняли частоту интерфейса и выпустили новый, двухканальный мостик .

Более подробно об этих особенностях архитектуры Pascal вы можете прочитать в нашем обзоре GeForce GTX 1080 . Однако прежде чем перейти к другим новинкам прошедшего года, стоит упомянуть, что в 10-й линейке GeForce NVIDIA впервые будет выпускать карты референсного дизайна в течение всего срока жизни соответствующих моделей. Они теперь носят название Founders Edition и продаются дороже розничной цены, рекомендованной для партнерских видеокарт. К примеру, для GTX 1070 и GTX 1080 рекомендованные цены составляют $379 и $599 (что уже выше, чем для GTX 970 и GTX 980 в период их молодости), а версии Founders Edition оценены в $449 и $699.

GeForce GTX 1050 и 1060

Чип GP106 распространил архитектуру Pascal в массовый сегмент игровых ускорителей. Функционально он ничем не отличается от старших моделей, а по количеству вычислительных блоков это половина GP104. Правда GP106, в отличие от GM206 (который был половиной GM204), использует 192-битную шину памяти. Кроме того, NVIDIA удалила разъемы SLI с платы GTX 1060 , огорчив любителей постепенного апгрейда видеоподсистемы: когда этот ускоритель исчерпает свои возможности, вторую видеокарту к нему уже не добавишь (кроме как для тех игр под DirectX 12, которые позволяют распределять нагрузку между GPU в обход драйвера).

GTX 1060 изначально оснащался 6 Гбайт GDDR5, полностью функциональным чипом GP106 и поступил в продажу по цене $249/299 (партнерские карты и Founders Edition соответственно). Но затем NVIDIA выпустила видеокарту с 3 Гбайт памяти и рекомендованной ценой $199, в которой сокращено и число вычислительных блоков. Обе видеокарты обладают привлекательным TDP 120 Вт, а по быстродействию являются аналогами GeForce GTX 970 и GTX 980.

GeForce GTX 1050 и GTX 1050 Ti принадлежат к самой нижней категории, освоенной архитектурой Pascal. Но как бы скромно они ни смотрелись на фоне старших собратьев, в бюджетной нише NVIDIA сделала наибольший шаг вперед. GTX 750/750 Ti, которые занимали ее раньше, относятся к первой итерации архитектуры Maxwell, поэтому GTX 1050/1050 Ti, в отличие от прочих ускорителей семейства Pascal, продвинулись не на одно, а на полтора поколения. Благодаря существенно более крупному GPU и памяти, работающей на повышенной частоте, GTX 1050/1050 Ti нарастили производительность по сравнению со своими предшественниками сильнее, чем какие-либо другие представители серии Pascal (разница в 90% между GTX 750 Ti и GTX 1050 Ti).

И хотя GTX 1050/1050 Ti потребляют немного больше энергии (75 против 60 Вт), они все еще укладываются в нормы мощности для плат PCI Express, лишенных разъема дополнительного питания. Младшие ускорители NVIDIA не выпускала в формате Founders Edition, а рекомендованные розничные цены составили $109 и $139.

AMD Polaris: Radeon RX 460/470/480

Ответом на Pascal со стороны AMD стало семейство чипов Polaris. Линейка Polaris сейчас включает всего два чипа, на основе которых AMD производит три видеокарты (Radeon RX 460 , RX 470 и RX 480), в которых дополнительно варьирует объем набортной RAM. Как легко заметить даже по модельным номерам, в 400-й серии Radeon верхний эшелон производительности остался не занят. AMD предстоит наполнить его продуктами на базе кремния Vega. Еще в эпоху 28 нм AMD приобрела такую привычку — обкатывать нововведения на относительно мелких чипах и лишь затем внедрять во флагманских GPU.

Сразу нужно заметить, что в случае AMD новое семейство графических процессоров не тождественно новой версии подлежащей архитектуры GCN (Graphics Core Next), а отражает сочетание архитектуры и прочих особенностей продукта. Для GPU, построенных по новому техпроцессу, AMD отказалась от различных «островов» в кодовом имени (Northern Islands, South Islands и т. д.) и обозначает их именами звезд.

Тем не менее архитектура GCN в Polaris получила очередное, третье по счету обновление, благодаря которому (вместе с переходом на техпроцесс 14 нм FinFET) AMD существенно увеличила производительность на ватт.

  • Compute Unit — элементарная форма организации шейдерных ALU в GCN — претерпел ряд изменений, связанных с предвыборкой и кешированием инструкций, обращениями к кешу L2, которые в совокупности повысили удельную производительность CU на 15%.
  • Появилась поддержка вычислений половинной точности (FP16), которые используются в программах компьютерного зрения и машинного обучения.
  • GCN 1.3 предоставляет прямой доступ к внутреннему набору инструкций (ISA) потоковых процессоров, за счет которого разработчики могут писать максимально «низкоуровневый» и быстрый код — в противоположность шейдерным языкам DirectX и OpenGL, абстрагированным от железа.
  • Геометрические процессоры теперь способны на ранних этапах конвейера исключать полигоны нулевого размера либо полигоны, не имеющие пикселов в проекции, и получили кеш индексов, снижающий поглощение ресурсов при рендеринге мелкой дублирующейся геометрии.
  • Кеш L2 удвоенного объема.

Кроме того, инженеры AMD приложили большие усилия, чтобы заставить Polaris работать на как можно более высокой частоте. Частота GPU теперь контролируется с минимальной латентностью (задержка меньше 1 нс), а кривую напряжения карта корректирует при каждой загрузке ПК, дабы принять в расчет разброс параметров между отдельными чипами и старение кремния в процессе эксплуатации.

Тем не менее переход на техпроцесс 14 нм FinFET не прошел гладко для AMD. Действительно, компания смогла увеличить производительность на ватт на 62% (судя по результатам Radeon RX 480 и Radeon R9 380X в игровых тестах и паспортному TDP карт). Однако максимальные частоты Polaris не превышают 1266 МГц, и лишь некоторые из партнеров-производителей достигли большего, дополнительно поработав над охлаждением и системой питания. С другой стороны, видеокарты GeForce по-прежнему сохраняют лидерство по соотношению быстродействие — мощность, которого NVIDIA достигла еще в поколении Maxwell. Похоже, что AMD на первом этапе не смогла раскрыть всех возможностей техпроцесса нового поколения, либо сама архитектура GCN уже требует глубокой модернизации — последняя задача осталась на долю чипов Vega.

Ускорители на базе Polaris занимают ценовой промежуток от $109 до $239 (см. таблицу), хотя в ответ на появление GeForce GTX 1050/1050 Ti AMD снизила цены на две младшие карты до $100 и $170 соответственно. На данный момент в каждой категории цены/производительности наблюдается одинаковое соотношение сил между конкурирующими продуктами: GeForce GTX 1050 Ti быстрее, чем Radeon RX 460 с 4 Гбайт RAM, GTX 1060 с 3 Гбайт памяти быстрее, чем RX 470, а полноценный GTX 1060 опережает RX 480. Вместе с тем видеокарты AMD стоят дешевле, а значит — пользуются популярностью.

AMD Radeon Pro Duo

Отчет о минувшем годе в сфере дискретных GPU будет не полон, если мы проигнорируем еще одну из «красных» видеокарт. Покуда AMD еще не выпустила флагманский однопроцессорный видеоадаптер на замену Radeon R9 Fury X, у компании оставался в запасе один проверенный ход, чтобы продолжить покорение новых рубежей, — установить два чипа Fiji на одну плату. Эта карта, выход которой AMD не раз переносила, все-таки появилась в продаже незадолго до GeForce GTX 1080, но попала в категорию профессиональных ускорителей Radeon Pro и позиционировалась как платформа для создания игр в среде VR.

Для геймеров при цене в $1 499 (дороже пары Radeon R9 Fury X на момент выхода) Radeon Pro Duo не представляет интереса, и у нас даже не было возможности протестировать эту карту. А жаль, ведь с технической точки зрения Radeon Pro Duo выглядит интригующе. Паспортный TDP карты вырос лишь на 27% по сравнению с Fury X при том, что пиковые частоты процессоров AMD снизила на 50 МГц. Ранее AMD уже удалось выпусить удачную двухпроцессорную видеокарту — Radeon R9 295X2, так что заявленные производителем спецификации не вызывают особого скепсиса.

Чего ждать в 2017 году

Главные ожидания на грядущий год связаны с AMD. NVIDIA, скорее всего, ограничится выпуском флагманской игровой карты на базе GP102 под именем GeForce GTX 1080 Ti и, быть может, заполнит другую вакансию в 10-й серии GeForce — GTX 1060 Ti. В остальном линейка ускорителей Pascal уже сформирована, а дебют следующей архитектуры, Volta, запланирован лишь на 2018 год.

Как и в сфере CPU, AMD собрала все силы для разработки по-настоящему прорывной микроархитектуры графических процессоров, в то время как Polaris стал лишь перевалочным пунктом на пути к последней. Предположительно, уже в первом квартале 2017 года компания впервые выпустит на массовый рынок свой лучший кремний, Vega 10 (а вместе с ним или впоследствии — один или несколько младших чипов линейки). Наиболее достоверным свидетельством его возможностей стал анонс вычислительной карты MI25 в линейке Radeon Instinct, которая позиционируется в качестве ускорителя задач глубинного обучения. Судя по спецификациям, в ее основе лежит не что иное, как Vega 10. Карта развивает вычислительную мощность 12,5 TFLOPS в расчетах одинарной точности (FP32) — это больше, чем у TITAN X на GP102, — и оснащается 16 Гбайт памяти HBM2. TDP видеокарты лежит в пределах 300 Вт. О реальном быстродействии процессора можно только гадать, однако известно, что Vega принесет наиболее масштабное обновление микроархитектуры GPU со времен выхода первых чипов на базе GCN пять лет тему назад. Последнее заметно улучшит показатели производительности на ватт и позволит более эффективно распорядиться вычислительной мощностью шейдерных ALU (в которой чипы AMD традиционно не испытывают недостатка) в игровых приложения.

Также ходят слухи, что инженеры AMD теперь в совершенстве овладели техпроцессом 14 нм FinFET и компания готова выпустить вторую версию видеокарт Polaris со значительно более низким TDP. Как нам кажется, если это соответствует действительности, то обновленные чипы скорее пойдут в линейку Radeon RX 500, чем получат увеличенные индексы в существующей 400-й серии.

Приложение. Актуальные линейки дискретных видеоадаптеров AMD и NVIDIA

Производитель AMD
Модель Radeon RX 460 Radeon RX 470 Radeon RX 480 Radeon R9 Nano Radeon R9 Fury Radeon R9 Fury X
Графический процессор
Название Polaris 11 Polaris 10 Polaris 10 Fiji XT Fiji PRO Fiji XT
Микроархитектура GCN 1.3 GCN 1.3 GCN 1.3 GCN 1.2 GCN 1.2 GCN 1.2
Техпроцесс, нм 14 нм FinFET 14 нм FinFET 14 нм FinFET 28 28 28
Число транзисторов, млн 3 000 5 700 5 700 8900 8900 8900
1 090 / 1 200 926 / 1 206 1 120 / 1 266 — / 1 000 — / 1 000 — / 1 050
Число шейдерных ALU 896 2 048 2 304 4096 3584 4096
56 128 144 256 224 256
Число ROP 16 32 32 64 64 64
Оперативная память
Разрядность шины, бит 128 256 256 4096 4096 4096
Тип микросхем GDDR5 SDRAM GDDR5 SDRAM GDDR5 SDRAM HBM HBM HBM
1 750 (7 000) 1 650 (6 600) 1 750 (7 000) / 2 000 (8 000) 500 (1000) 500 (1000) 500 (1000)
Объем, Мбайт 2 048 / 4 096 4 096 4 096 / 8 192 4096 4096 4096
Шина ввода/вывода PCI Express 3.0 x8 PCI Express 3.0 x16 PCI Express 3.0 x16 PCI Express 3.0 x16 PCI Express 3.0 x16 PCI Express 3.0 x16
Производительность
2 150 4 940 5 834 8 192 7 168 8 602
Производительность FP32/FP64 1/16 1/16 1/16 1/16 1/16 1/16
112 211 196/224 512 512 512
Вывод изображения
DL DVI-D, HDMI 2.0b, DisplayPort 1.3/1.4 DL DVI-D, HDMI 2.0b, DisplayPort 1.3/1.4 HDMI 1.4a, DisplayPort 1.2 HDMI 1.4a, DisplayPort 1.2 HDMI 1.4a, DisplayPort 1.2
TDP, Вт <75 120 150 175 275 275
109/139 179 199/229 649 549 649
8 299 / 10 299 15 999 16 310 / 18 970 НД НД НД
Производитель NVIDIA
Модель GeForce GTX 1050 GeForce GTX 1050 Ti GeForce GTX 1060 3 GB GeForce GTX 1060 GeForce GTX 1070 GeForce GTX 1080 TITAN X
Графический процессор
Название GP107 GP107 GP106 GP106 GP104 GP104 GP102
Микроархитектура Pascal Pascal Maxwell Maxwell Pascal Pascal Pascal
Техпроцесс, нм 14 нм FinFET 14 нм FinFET 16 нм FinFET 16 нм FinFET 16 нм FinFET 16 нм FinFET 16 нм FinFET
Число транзисторов, млн 3 300 3 300 4 400 4 400 7 200 7 200 12 000
Тактовая частота, МГц: Base Clock / Boost Clock 1 354 / 1 455 1 290 / 1 392 1506/1708 1506/1708 1 506 / 1 683 1 607 / 1 733 1 417 / 1531
Число шейдерных ALU 640 768 1 152 1 280 1 920 2 560 3 584
Число блоков наложения текстур 40 48 72 80 120 160 224
Число ROP 32 32 48 48 64 64 96
Оперативная память
Разрядность шины, бит 128 128 192 192 256 256 384
Тип микросхем GDDR5 SDRAM GDDR5 SDRAM GDDR5 SDRAM GDDR5 SDRAM GDDR5 SDRAM GDDR5X SDRAM GDDR5X SDRAM
Тактовая частота, МГц (пропускная способность на контакт, Мбит/с) 1 750 (7 000) 1 750 (7 000) 2000 (8000) 2000 (8000) 2000 (8000) 1 250 (10 000) 1 250 (10 000)
Объем, Мбайт 2 048 4 096 6 144 6 144 8 192 8 192 12 288
Шина ввода/вывода PCI Express 3.0 x16 PCI Express 3.0 x16 PCI Express 3.0 x16 PCI Express 3.0 x16 PCI Express 3.0 x16 PCI Express 3.0 x16 PCI Express 3.0 x16
Производительность
Пиковая производительность FP32, GFLOPS (из расчета максимальной указанной частоты) 1 862 2 138 3 935 4 373 6 463 8 873 10 974
Производительность FP32/FP64 1/32 1/32 1/32 1/32 1/32 1/32 1/32
Пропускная способность оперативной памяти, Гбайт/с 112 112 192 192 256 320 480
Вывод изображения
Интерфейсы вывода изображения DL DVI-D, DisplayPort 1.3/1.4, HDMI 2.0b DL DVI-D, DisplayPort 1.3/1.4, HDMI 2.0b DL DVI-D, DisplayPort 1.3/1.4, HDMI 2.0b DL DVI-D, DisplayPort 1.3/1.4, HDMI 2.0b DL DVI-D, DisplayPort 1.3/1.4, HDMI 2.0b DL DVI-D, DisplayPort 1.3/1.4, HDMI 2.0b
TDP, Вт 75 75 120 120 150 180 250
Рекомендованная розничная цена на момент выхода (США, без налога), $ 109 139 199 249/299 (Founders Edition / партнерские карты) 379/449 (Founders Edition / партнерские карты) 599/699 (Founders Edition / партнерские карты) 1 200
Рекомендованная розничная цена на момент выхода (Россия), руб. 8 490 10 490 НД 18 999 / — (Founders Edition / партнерские карты) НД / 34 990 (Founders Edition / партнерские карты) НД / 54 990 (Founders Edition / партнерские карты)

Встроенный графический процессор как для геймеров, так и для нетребовательных пользователей играет важную роль.

От него зависит качество игр, фильмов, просмотра видео в интернете и изображений.

Принцип работы

Графический процессор интегрируется в материнскую плату компьютера - так выглядит встроенный графический .

Как правило, используют его, чтобы убрать необходимость установки графического адаптера - .

Такая технология помогает снизить себестоимость готового продукта. Кроме того, благодаря компактности и нетребовательного энергопотребления таких процессоров их часто устанавливают в ноутбуки и маломощные настольные компьютеры.

Таким образом, встроенные графические процессоры заполонили эту нишу настолько, что 90% ноутбуков на полках магазинов США имеют именно такой процессор.

Вместо обычной видеокарты во встроенных графиках часто вспомогательным средством служит сама оперативная память компьютера.

Правда, такое решение несколько ограничивает производительность девайса. Всё же сам компьютер и графический процессор используют одну шину для памяти.

Так что подобное “соседство” сказывается на выполнении задач, особенно при работе со сложной графикой и во время игрового процесса.

Виды

Встроенная графика имеет три группы:

  1. Графика с разделяемой памятью - устройство, в основе которого совместное с главным процессором управление оперативной памятью. Это значительно уменьшает стоимость, улучшает систему энергосбережения, однако ухудшает производительность. Соответственно, для тех, кто работает со сложными программами, встроенные графические процессоры такого вида с большей вероятностью не подойдут.
  2. Дискретная графика - видеочип и один-два модуля видеопамяти распаяны на системной плате. Благодаря этой технологии существенно улучшается качество изображения, а также становится возможным работать с трехмерной графикой с наилучшими результатами. Правда, заплатить за это придется немало, а если вы и подыскиваете высокомощный процессор по всем параметрам, то стоимость может быть неимоверно высокой. К тому же, счет за электричество несколько вырастет - энергопотребление дискретных графических процессоров выше обычного.
  3. Гибридная дискретная графика - сочетание двух предыдущих видов, что обеспечило создание шины PCI Express. Таким образом, доступ к памяти осуществляется и через распаянную видеопамять, и через оперативную. С помощью этого решения производители хотели создать компромиссное решение, но оно все же не нивелирует недостатки.

Производители

Занимаются изготовлением и разработкой встроенных графических процессоров, как правило, крупные компании - , и , но подключаются к этой сфере и многие небольшие предприятия.

Сделать это несложно. Найдите надпись Primary Display или Init Display First. Если не видите что-то такое, поищите Onboard, PCI, AGP или PCI-E (всё зависит от установленных шин на материнку).

Выбрав PCI-E, к примеру, вы включаете видеокарту PCI-Express, а встроенную интегрированную отключаете.

Таким образом, чтобы включить интегрированную видеокарту нужно найти соответствующие параметры в биосе. Часто процесс включения автоматический.

Отключить

Отключение лучше проводить в БИОСе. Это самый простой и незатейливый вариант, подходящий для практически всех ПК. Исключением являются разве что некоторые ноутбуки.

Снова же найдите в БИОС Peripherals или Integrated Peripherals, если вы работаете на десктопе.

Для ноутбуков название функции другое, причем и не везде одинаковое. Так что просто найдите что-то относящиеся к графике. К примеру, нужные опции могут быть размещены в разделах Advanced и Config.

Отключение тоже проводится по-разному. Иногда хватает просто щелкнуть “Disabled” и выставить PCI-E видеокарту первой в списке.

Если вы пользователь ноутбука, не пугайтесь, если не можете найти подходящий вариант, у вас априори может не быть такой функции. Для всех остальных устройств же правила простые - как бы не выглядел сам БИОС, начинка та же.

Если вы имеете две видеокарты и они обе показаны в диспетчере устройств, то дело совсем простое: кликнете на одну из них правой стороной мышки и выберите “отключить”. Правда, учитывайте, что дисплей может потухнуть. У , скорее всего, так и будет.

Однако и это решаемая проблема. Достаточно перезагрузить компьютер или же по .

Все последующие настройки проведите на нем. Если не работает данный способ, сделайте откат своих действий с помощью безопасного режима. Также можете прибегнуть и к предыдущему способу - через БИОС.

Две программы - NVIDIA Control Center и Catalyst Control Center - настраивают использование определенного видеоадаптера.

Они наиболее неприхотливы по сравнению с двумя другими способами - экран вряд ли выключится, через БИОС вы тоже случайно не собьете настройки.

Для NVIDIA все настройки находятся в разделе 3D.

Выбрать предпочитаемый видеоадаптер можно и для всей операционной системы, и для определенных программ и игр.

В ПО Catalyst идентичная функция расположена в опции «Питание» в подпункте “Switchable Graphics”.

Таким образом, переключиться между графическими процессорами не составляет особого труда.

Есть разные методы, в частности, и через программы, и через БИОС, Включение или выключение той или иной интегрированной графики может сопутствоваться некоторыми сбоями, связанных преимущественно с изображением.

Может погаснуть или просто появиться искажения. На сами файлы в компьютере ничего не должно повлиять, разве что вы что-то наклацали в БИОСе.

Заключение

В итоге, встроенные графические процессоры пользуются спросом за счет своей дешевизны и компактности.

За это же придется платить уровнем производительности самого компьютера.

В некоторых случая интегрированная графика просто необходима - дискретные процессоры идеальны для работы с трехмерными изображениями.

К тому же, лидеры отрасли - Intel, AMD и Nvidia. Каждый из них предлагает свои графические ускорители, процессоры и другие составляющие.

Последние популярные модели - Intel HD Graphics 530 и AMD A10-7850K. Они довольно функциональны, но имеют некоторые огрехи. В частности, это относится к мощности, производительности и стоимости готового продукта.

Включить или отключить графический процессор со встроенным ядром можно или же самостоятельно через БИОС, утилиты и разного рода программы, но и сам компьютер вполне может сделать это за вас. Всё зависит от того, какая видеокарта подключена к самому монитору.

Базовые компоненты видеокарты:

  • выходы;
  • интерфейсы;
  • система охлаждения;
  • графический процессор;
  • видеопамять.

Графические технологии :

  • словарик;
  • архитектура графического процессора: функции
    вершинные/пиксельные блоки, шейдеры, скорость заполнения, текстурные/растровые блоки, конвейеры;
  • архитектура графического процессора: технология
    техпроцесс, частота графического процессора, локальная видеопамять (объём, шина, тип, частота), решения с несколькими видеокартами;
  • визуальные функции
    DirectX, высокий динамический диапазон (HDR), полноэкранное сглаживание, текстурная фильтрация, текстуры высокого разрешения.

Словарик базовых графических терминов

Частота обновления (Refresh Rate)

Как в кинотеатре или на телевизоре, ваш компьютер симулирует движение на мониторе, выводя последовательность кадров. Частота обновления монитора указывает на то, сколько раз в секунду на экране будет обновляться картинка. Например, частота 75 Гц соответствует 75 обновлениям в секунду.

Если компьютер обрабатывает кадры быстрее, чем может выводить монитор, то в играх могут появиться проблемы. Например, если компьютер просчитывает 100 кадров в секунду, а частота обновления монитора составляет 75 Гц, то из-за накладок монитор может выводить только часть картинки за период своего обновления. В итоге появляются визуальные артефакты.

В качестве решения можно включить V-Sync (вертикальную синхронизацию). Она ограничивает число выдаваемых компьютером кадров до частоты обновления монитора, предотвращая появление артефактов. Если включить V-Sync, то число просчитываемых в игре кадров никогда не превысит частоту обновления. То есть при 75 Гц компьютер будет выводить не более 75 кадров в секунду.

Пиксель (Pixel)

Слово «Pixel» расшифровывается как «pic ture el ement» — элемент изображения. Он представляет собой крошечную точку на дисплее, которая может светиться определённых цветом (в большинстве случаев оттенок выводится сочетанием трёх базовых цветов: красного, зелёного и синего). Если разрешение экрана составляет 1024×768, то на нём можно заметить матрицу из 1024 пикселей по ширине и 768 пикселей по высоте. Все вместе пиксели и составляют изображение. Картинка на экране обновляется от 60 до 120 раз в секунду, в зависимости от типа дисплея и данных, выдаваемых выходом видеокарты. ЭЛТ-мониторы обновляют дисплей строчка за строчкой, а плоские ЖК-мониторы могут обновлять каждый пиксель по отдельности.

Вершина (Vertex)

Все объекты на 3D-сцене состоят из вершин. Вершина — точка в трёхмерном пространстве с координатами X, Y и Z. Несколько вершин можно сгруппировать в полигон: чаще всего это треугольник, но возможны и более сложные формы. Затем на полигон накладывается текстура, что позволяет объекту выглядеть реалистично. 3D-куб, показанный на иллюстрации выше, состоит из восьми вершин. Более сложные объекты имеют кривые поверхности, которые на самом деле состоят из очень большого числа вершин.

Текстура (Texture)

Текстура — это просто 2D-картинка произвольного размера, которая накладывается на 3D-объект, чтобы симулировать его поверхность. Например, наш 3D-куб состоит из восьми вершин. До наложения текстуры он выглядит как простая коробка. Но когда мы нанесём текстуру, то коробка становится окрашенной.

Шейдер (Shader)

Пиксельные программы-шейдеры позволяет видеокарте выдать впечатляющие эффекты, например, как эту воду в Elder Scrolls: Oblivion.

Сегодня существует два вида шейдеров: вершинные и пиксельные. Вершинные программы-шейдеры могут изменять или трансформировать 3D-объекты. Пиксельные программы-шейдеры позволяют менять цвета пикселей на основе каких-либо данных. Представьте себе источник света на 3D-сцене, который заставляет светиться освещаемые объекты ярче, и в то же время, приводит к отбрасыванию тени на другие объекты. Всё это реализуется с помощью изменения цветовой информации пикселей.

Пиксельные шейдеры используются для создания сложных эффектов в ваших любимых играх. Например, код шейдера может заставить пиксели, окружающие 3D-меч, ярче светиться. Ещё один шейдер может обработать все вершины сложного 3D-объекта и симулировать взрыв. Разработчики игр всё чаще прибегают к помощи сложных программ-шейдеров для создания реалистичной графики. Практически любая современная игра с богатой графикой использует шейдеры.

С выпуском следующего интерфейса прикладного программирования (API, Application Programming Interface) Microsoft DirectX 10 на свет выйдет третий тип шейдеров под названием геометрические шейдеры. С их помощью можно будет ломать объекты, модифицировать и даже уничтожать их в зависимости от требуемого результата. Третий тип шейдеров можно будет точно так же программировать, как и первые два, но роль его уже будет другой.

Скорость заполнения (Fill Rate)

Очень часто на коробке с видеокартой можно встретить значение скорости заполнения. В принципе, скорость заполнения указывает на то, с какой скорость графический процессор может выдавать пиксели. У старых видеокарт можно было встретить скорость заполнения треугольников (triangle fill rate). Но сегодня выделяют два типа скорости заполнения: пиксельную (pixel fill rate) и текстурную (texture fill rate). Как уже говорилось, пиксельная скорость заполнения соответствует скорости выдачи пикселей. Она рассчитывается как число растровых операций (ROP), помноженное на тактовую частоту.

Текстурную скорость заполнения ATi и nVidia считают по-разному. nVidia считает, что скорость получается умножением числа пиксельных конвейеров на тактовую частоту. А ATi умножает число текстурных блоков на тактовую частоту. В принципе, оба способа корректны, поскольку nVidia использует по одному текстурному блоку на блок пиксельных шейдеров (то есть по одному на пиксельный конвейер).

С учётом данных определений позвольте двинуться дальше и обсудить наиболее важные функции графического процессора, что они делают и почему они столь значимы.

Архитектура графического процессора: функции

Реализм 3D-графики очень сильно зависит от производительности видеокарты. Чем больше блоков пиксельных шейдеров содержит процессор и чем выше частота, тем больше эффектов можно наложить на 3D-сцену, чтобы улучшить её визуальное восприятие.

Графический процессор содержит много различных функциональных блоков. По количеству некоторых компонентов можно оценить, насколько графический процессор мощный. Перед тем, как двигаться дальше, позвольте рассмотреть самые важные функциональные блоки.

Вершинные процессоры (блоки вершинных шейдеров)

Как и блоки пиксельных шейдеров, вершинные процессоры выполняют код программ-шейдеров, которые касаются вершин. Поскольку больший бюджет вершин позволяет создавать более сложные 3D-объекты, производительность вершинных процессоров очень важна в 3D-сценах со сложными объектами или с большим их количеством. Впрочем, блоки вершинных шейдеров всё же не так очевидно влияют на производительность, как пиксельные процессоры.

Пиксельные процессоры (блоки пиксельных шейдеров)

Пиксельный процессор — это компонент графического чипа, выделенный на обработку пиксельных программ-шейдеров. Эти процессоры выполняют вычисления, касающиеся только пикселей. Поскольку пиксели содержат информацию о цвете, пиксельные шейдеры позволяют достичь впечатляющих графических эффектов. Например, большинство эффектов воды, которые вы видели в играх, создаётся с помощью пиксельных шейдеров. Обычно число пиксельных процессоров используется для сравнения пиксельной производительности видеокарт. Если одна карта оснащена восемью блоками пиксельных шейдеров, а другая — 16 блоками, то вполне логично предположить, что видеокарта с 16 блоками будет быстрее обрабатывать сложные пиксельные программы. Также следует учитывать и тактовую частоту, но сегодня удвоение числа пиксельных процессоров эффективнее по энергопотреблению, чем удвоение частоты графического чипа.

Унифицированные шейдеры

Унифицированные (единые) шейдеры ещё не пришли в мир ПК, но грядущий стандарт DirectX 10 как раз опирается на подобную архитектуру. То есть структура кода вершинных, геометрических и пиксельных программ будет единая, хотя шейдеры будут выполнять разную работу. Новую спецификацию можно посмотреть в Xbox 360, где графический процессор был специально разработан ATi для Microsoft. Будет весьма интересно увидеть, какой потенциал несёт новый DirectX 10.

Блоки наложения текстур (Texture Mapping Unit, TMU)

Текстуры следует выбрать и отфильтровать. Эта работа выполняется блоками наложения текстур, которые работают совместно с блоками пиксельных и вершинных шейдеров. Работа TMU заключается в применении текстурных операций над пикселями. Число текстурных блоков в графическом процессоре часто используется для сравнения текстурной производительности видеокарт. Вполне разумно предположить, что видеокарта с большим числом TMU даст более высокую текстурную производительность.

Блоки растровых операций (Raster Operator Unit, ROP)

Процессоры растровых операций отвечают за запись пиксельных данных в память. Скорость, с которой выполняется эта операция, является скоростью заполнения (fill rate). В ранние дни 3D-ускорителей число ROP и скорость заполнения являлись очень важными характеристиками видеокарт. Сегодня работа ROP по-прежнему важна, но производительность видеокарты уже не упирается в эти блоки, как было раньше. Поэтому производительность (и число) ROP уже редко используется для оценки скорости видеокарты.

Конвейеры

Конвейеры используются для описания архитектуры видеокарт и дают вполне наглядное представление о производительности графического процессора.

Конвейер нельзя считать строгим техническим термином. В графическом процессоре используются разные конвейеры, которые выполняют отличающиеся друг от друга функции. Исторически под конвейером понимали пиксельный процессор, который был подключён к своему блоку наложения текстур (TMU). Например, у видеокарты Radeon 9700 используется восемь пиксельных процессоров, каждый из которых подключён к своему TMU, поэтому считают, что у карты восемь конвейеров.

Но современные процессоры описать числом конвейеров весьма сложно. По сравнению с предыдущими дизайнами, новые процессоры используют модульную, фрагментированную структуру. Новатором в этой сфере можно считать ATi, которая с линейкой видеокарт X1000 перешла на модульную структуру, что позволило достичь прироста производительности через внутреннюю оптимизацию. Некоторые блоки процессора используются больше, чем другие, и для повышения производительности графического процессора ATi постаралась найти компромисс между числом нужных блоков и площадью кристалла (её нельзя очень сильно увеличивать). В данной архитектуре термин «пиксельный конвейер» уже потерял своё значение, поскольку пиксельные процессоры уже не подключены к собственным блокам TMU. Например, у графического процессора ATi Radeon X1600 есть 12 блоков пиксельных шейдеров и всего четыре блока наложения текстур TMU. Поэтому нельзя говорить, что в архитектуре этого процессора есть 12 пиксельных конвейеров, как и говорить, что их всего четыре. Впрочем, по традиции пиксельные конвейеры всё ещё упоминают.

С учётом сказанных допущений, число пиксельных конвейеров в графическом процессоре часто используют для сравнения видеокарт (за исключением линейки ATi X1x00). Например, если взять видеокарты с 24 и 16 конвейерами, то вполне разумно предположить, что карта с 24 конвейерами будет быстрее.

Архитектура графического процессора: технология

Техпроцесс

Под этим термином понимают размер одного элемента (транзистора) чипа и точность процесса производства. Совершенствование техпроцессов позволяет получить элементы меньших размеров. Например, техпроцесс 0,18 мкм даёт элементы большего размера, чем 0,13-мкм техпроцесс, поэтому он не такой эффективный. Транзисторы меньшего размера работают от меньшего напряжения. В свою очередь, снижение напряжения приводит к уменьшению теплового сопротивления, что даёт снижение количества выделяемого тепла. Совершенствование техпроцесса позволяет уменьшить расстояние между функциональными блоками чипа, а на передачу данных требуется меньше времени. Сокращение расстояний, понижение напряжения и другие улучшения позволяют достигать более высоких тактовых частот.

Несколько усложняет понимание то, что для обозначения техпроцесса сегодня используют как микрометры (мкм), так и нанометры (нм). На самом деле всё очень просто: 1 нанометр равен 0,001 микрометру, поэтому 0,09-мкм и 90-нм техпроцессы — это одно и то же. Как уже отмечалось выше, меньший техпроцесс позволяет получить более высокие тактовые частоты. Например, если сравнивать видеокарты с чипами 0,18 мкм и 0,09 мкм (90 нм), то вполне разумно ожидать от 90-нм карты более высокой частоты.

Тактовая частота графического процессора

Тактовая частота графического процессора измеряется в мегагерцах (МГц), то есть в миллионах тактов за секунду.

Тактовая частота напрямую влияет на производительность графического процессора. Чем она выше, тем больше работы можно выполнить за секунду. Для первого примера возьмём видеокарты nVidia GeForce 6600 и 6600 GT: графический процессор 6600 GT работает на частоте 500 МГц, а у обычной карты 6600 — на 400 МГц. Поскольку процессоры технически идентичны, 20% прирост тактовой частоты 6600 GT приводит к более высокой производительности.

Но тактовая частота — это ещё далеко не всё. Следует учитывать, что на производительность очень сильно влияет архитектура. Для второго примера возьмём видеокарты GeForce 6600 GT и GeForce 6800 GT. Частота графического процессора 6600 GT составляет 500 МГц, но 6800 GT работает всего на 350 МГц. А теперь примем во внимание, что у 6800 GT используются 16 пиксельных конвейеров, а у 6600 GT — только восемь. Поэтому 6800 GT с 16 конвейерами на 350 МГц даст примерно такую же производительность, как процессор с восемью конвейерами и удвоенной тактовой частотой (700 МГц). С учётом сказанного, тактовую частоту вполне можно использовать для сравнения производительности.

Локальная видеопамять

Память видеокарты очень сильно влияет на производительность. Но разные параметры памяти влияют по-разному.

Объём видеопамяти

Объём видеопамяти, наверное, можно назвать параметром видеокарты, который больше всего переоценивают. Неопытные потребители часто используют объём видеопамяти для сравнения разных карт между собой, но в реальности объём слабо влияет на производительность по сравнению с такими параметрами, как частота шины памяти и интерфейс (ширина шины).

В большинстве случаев карта со 128 Мбайт видеопамяти будет работать почти так же, как карта с 256 Мбайт. Конечно, есть ситуации, когда больший объём памяти приводит к увеличению производительности, но следует помнить, что больший объём памяти не будет автоматически приводить к росту скорости в играх.

Где объём бывает полезен, так это в играх с текстурами высокого разрешения. Игровые разработчики прилагают к игре несколько наборов текстур. И чем больше памяти будет на видеокарте, тем более высокое разрешение могут иметь загружаемые текстуры. Текстуры высокого разрешения дают более высокую чёткость и детализацию в игре. Поэтому вполне разумно брать карту с большим объёмом памяти, если все другие критерии совпадают. Ещё раз напомним, что ширина шины памяти и её частота намного сильнее влияют на производительность, чем объём физической памяти на карте.

Ширина шины памяти

Ширина шины памяти — один из самых важных аспектов производительности памяти. Современные шины имеют ширину от 64 до 256 бит, а в некоторых случаях даже 512 бит. Чем шире шина памяти, тем больше информации она может передать за такт. А это напрямую влияет на производительность. Например, если взять две шины с равными частотами, то теоретически 128-битная шина передаст в два раза больше данных за такт, чем 64-битная. А 256-битная шина — ещё в два раза больше.

Более высокая пропускная способность шины (выражается в битах или байтах в секунду, 1 байт = 8 бит) даёт более высокую производительность памяти. Именно поэтому шина памяти намного важнее, чем её объём. При равных частотах 64-битная шина памяти работает со скоростью всего 25% от 256-битной!

Возьмём следующий пример. Видеокарта со 128 Мбайт видеопамяти, но с 256-битной шиной даёт намного более высокую производительность памяти, чем 512-Мбайт модель с 64-битной шиной. Важно отметить, что у некоторых карт из линейки ATi X1x00 производители указывают спецификации внутренней шины памяти, но нас интересуют параметры внешней шины. Например, у X1600 внутренняя кольцевая шина имеет ширину 256 бит, но внешняя — всего 128 бит. И в реальности шина памяти работает со 128-битной производительностью.

Типы памяти

Память можно разделить на две основные категории: SDR (одиночная передача данных) и DDR (удвоенная передача данных), при которой данные передаются за такт в два раза быстрее. Сегодня технология одиночной передачи SDR устарела. Поскольку у памяти DDR данные передаются в два раза быстрее, чем у SDR, важно помнить, что у видеокарт с памятью DDR чаще всего указывают удвоенную частоту, а не физическую. Например, если у памяти DDR указана частота 1000 МГц, то это эффективная частота, при которой должна работать обычная память SDR, чтобы дать такую же пропускную способность. А на самом деле физическая частота составляет 500 МГц.

По этой причине многие удивляются, когда для памяти их видеокарты указана частота 1200 МГц DDR, а утилиты сообщают о 600 МГц. Так что придётся привыкнуть. Память DDR2 и GDDR3/GDDR4 работает по такому же принципу, то есть с удвоенной передачей данных. Различие между памятью DDR, DDR2, GDDR3 и GDDR4 кроется в технологии производства и некоторых деталях. DDR2 может работать на более высоких частотах, чем память DDR, а DDR3 — ещё на более высоких, чем DDR2.

Частота шины памяти

Подобно процессору, память (или, точнее, шина памяти) работает на определённых тактовых частотах, измеряемых в мегагерцах. Здесь повышение тактовых частот напрямую влияет на производительность памяти. И частота шины памяти является одним из параметров, которые используют для сравнения производительности видеокарт. Например, если все другие характеристики (ширина шины памяти и т.д.) будут одинаковыми, то вполне логично утверждать, что видеокарта с 700-МГц памятью работает быстрее, чем с 500-МГц.

Опять же, тактовая частота — это ещё не всё. 700-МГц память с 64-битной шиной будет работать медленнее, чем 400-МГц память со 128-битной шиной. Производительность 400-МГц памяти на 128-битной шине примерно соответствует 800-МГц памяти на 64-битной шине. Следует также помнить, что частоты графического процессора и памяти — совершенно разные параметры, и обычно они различаются.

Интерфейс видеокарты

Все данные, передаваемые между видеокартой и процессором, проходят через интерфейс видеокарты. Сегодня для видеокарт используется три типа интерфейсов: PCI, AGP и PCI Express. Они различаются пропускной способностью и другими характеристиками. Понятно, что чем выше пропускная способность, тем выше и скорость обмена. Впрочем, высокую пропускную способность могут использовать только самые современные карты, да и то лишь частично. В какой-то момент скорость интерфейса перестала быть «узким местом», её сегодня попросту достаточно.

Самая медленная шина, для которой выпускались видеокарты, это PCI (Peripheral Components Interconnect). Если не вдаваться в историю, конечно. PCI действительно ухудшала производительность видеокарт, поэтому они перешли на интерфейс AGP (Accelerated Graphics Port). Но даже спецификации AGP 1.0 и 2x ограничивали производительность. Когда стандарт увеличил скорость до уровня AGP 4x, мы начали приближаться к практическому пределу пропускной способности, которую могут задействовать видеокарты. Спецификация AGP 8x ещё раз удвоила пропускную способность по сравнению с AGP 4x (2,16 Гбайт/с), но ощутимого прироста графической производительности мы уже не получили.

Самая новая и скоростная шина — PCI Express. Новые графические карты обычно используют интерфейс PCI Express x16, который сочетает 16 линий PCI Express, дающих суммарную пропускную способность 4 Гбайт/с (в одном направлении). Это в два раза больше, чем пропускная способность AGP 8x. Шина PCI Express даёт упомянутую пропускную способность для обоих направлений (передача данных на видеокарту и с неё). Но скорости стандарта AGP 8x было уже достаточно, поэтому мы пока не встречали ситуации, когда переход на PCI Express дал прирост производительности по сравнению с AGP 8x (если другие аппаратные параметры одинаковы). Например, AGP-версия GeForce 6800 Ultra будет работать идентично 6800 Ultra для PCI Express.

Сегодня лучше всего покупать карту с интерфейсом PCI Express, он продержится на рынке ещё несколько лет. Самые производительные карты уже не выпускаются с интерфейсом AGP 8x, и решения PCI Express, как правило, найти уже легче аналогов AGP, да и стоят они дешевле.

Решения на нескольких видеокартах

Использовать несколько видеокарт для увеличения графической производительности — идея не новая. В ранние дни 3D-графики копания 3dfx вышла на рынок с двумя видеокартами, работающими параллельно. Но с исчезновением 3dfx технология совместной работы нескольких потребительских видеокарт была предана забвению, хотя ATi выпускала подобные системы для профессиональных симуляторов ещё с выхода Radeon 9700. Пару лет назад технология вернулась на рынок: с появлением решений nVidia SLI и, чуть позднее, ATi Crossfire.

Совместное использование нескольких видеокарт даёт достаточную производительность, чтобы вывести игру с высокими настройками качества в высоком разрешении. Но выбирать то или иное решение не так просто.

Начнём с того, что решения на основе нескольких видеокарт требуют большое количество энергии, поэтому блок питания должен быть достаточно мощным. Всё это тепло придётся отводить от видеокарты, поэтому нужно обратить внимание на корпус ПК и охлаждение, чтобы система не перегрелась.

Кроме того, помните, что SLI/CrossFire требует соответствующей материнской платы (либо под одну технологию, либо под другую), которая обычно стоит дороже по сравнению со стандартными моделями. Конфигурация nVidia SLI будет работать только на определённых платах nForce4, а карты ATi CrossFire — только на материнских платах с чипсетом CrossFire или на некоторых моделях Intel. Ситуацию осложняет и то, что некоторые конфигурации CrossFire требуют, чтобы одна из карт была специальной: CrossFire Edition. После выхода CrossFire для некоторых моделей видеокарт ATi разрешила включать технологию совместной работы по шине PCI Express, причём с выходами новых версий драйверов число возможных комбинаций увеличивается. Но всё же аппаратный CrossFire с соответствующей картой CrossFire Edition даёт более высокую производительность. Но и карты CrossFire Edition стоят дороже обычных моделей. На данный момент вы можете включить программный режим CrossFire (без карты CrossFire Edition) на видеокартах Radeon X1300, X1600 и X1800 GTO.

Следует учитывать и другие факторы. Хотя две графические карты, работающие совместно, и дают прирост производительности, ему далеко до двукратного. Но денег-то вы отдадите в два раза больше. Чаще всего прирост производительности составляет 20-60%. А в некоторых случаях из-за дополнительных вычислительных расходов на согласование прироста нет вообще. По этой причине конфигурации на нескольких картах вряд ли оправдывают себя с дешёвыми моделями, поскольку более дорогая видеокарта, как правило, всегда обгоняет пару дешёвых карт. В общем, для большинства потребителей брать решение SLI/CrossFire смысла не имеет. Но если вы хотите включить все опции улучшения качества или играть в экстремальных разрешениях, например, 2560×1600, когда надо просчитывать больше 4 миллионов пикселей на кадр, то без двух или четырёх спаренных видеокарт не обойтись.

Визуальные функции

Кроме чисто аппаратных спецификаций, различные поколения и модели графических процессоров могут отличаться набором функций. Например, часто говорят о том, что карты поколения ATi Radeon X800 XT совместимы с Shader Model 2.0b (SM), в то время как nVidia GeForce 6800 Ultra совместима с SM 3.0, хотя их аппаратные спецификации близки друг к другу (16 конвейеров). Поэтому многие потребители делают выбор в пользу того или иного решения, даже не зная, что означает это различие.

Microsoft DirectX и версии Shader Model

Эти названия чаще всего используют в спорах, но мало кто знает, что они означают на самом деле. Чтобы разобраться, давайте начнём с истории графических API. DirectX и OpenGL — это графические API, то есть интерфейсы прикладного программирования (Application Programming Interface) — открытые стандарты кода, доступные каждому.

До появления графических API каждый производитель графических процессоров использовал собственный механизм общения с играми. Разработчикам приходилось писать отдельный код для каждого графического процессора, который они хотели поддержать. Очень дорогой и не эффективный подход. Для решения этой проблемы были разработаны API для 3D-графики, чтобы разработчики писали код под конкретный API, а не под ту или иную видеокарту. После чего проблемы совместимости легли уже на плечи производителей видеокарт, которым пришлось гарантировать, что драйверы будут совместимы с API.

Единственной сложностью остаётся то, что сегодня используются два разных API, а именно Microsoft DirectX и OpenGL, где GL расшифровывается как Graphics Library (графическая библиотека). Поскольку API DirectX сегодня в играх более популярен, мы сконцентрируемся именно на нём. Да и на развитие игр этот стандарт повлиял сильнее.

DirectX — это создание Microsoft. В действительности, в DirectX входит несколько API, только один из которых используется для 3D-графики. DirectX включает API для звука, музыки, устройств ввода и т.д. За 3D-графику в DirectX отвечает API Direct3D. Когда говорят о видеокартах, то имеют в виду именно его, поэтому в данном отношении понятия DirectX и Direct3D взаимозаменяемы.

DirectX периодически обновляется, по мере того, как графические технологии продвигаются вперёд, а игровые разработчики внедряют новые методы программирования игр. Поскольку популярность DirectX быстро возросла, производители графических процессоров начали подгонять выпуск новых продуктов под возможности DirectX. По этой причине видеокарты часто привязывают к аппаратной поддержке того или иного поколения DirectX (DirectX 8, 9.0 или 9.0c).

Ситуацию усложняет и то, что части API Direct3D могут меняться со временем, без смены поколений DirectX. Например, в спецификации DirectX 9.0 указана поддержка Pixel Shader 2.0. Но обновление DirectX 9.0c включает Pixel Shader 3.0. Таким образом, хотя карты относятся к классу DirectX 9, они могут поддерживать разные наборы функций. Например, Radeon 9700 поддерживает Shader Model 2.0, а Radeon X1800 — Shader Model 3.0, хотя обе карты можно отнести к поколению DirectX 9.

Помните, что при создании новых игр разработчики учитывают владельцев старых машин и видеокарт, так как если игнорировать этот сегмент пользователей, то уровень продаж будет ниже. По этой причине в игры встраивается несколько путей кода. У игры класса DirectX 9 наверняка есть для совместимости путь DirectX 8 и даже путь DirectX 7. Обычно, если выбирается старый путь, то в игре исчезают некоторые виртуальные эффекты, которые есть на новых видеокартах. Но, по крайней мере, можно играть даже на старом «железе».

Многие новые игры требуют установки новейшей версии DirectX, даже если видеокарта относится к предыдущему поколению. То есть новая игра, которая будет использовать путь DirectX 8, всё равно требует установки новейшей версии DirectX 9 для видеокарты класса DirectX 8.

Каковы же различия между разными версиями API Direct3D в DirectX? Ранние версии DirectX — 3, 5, 6 и 7 — были относительно просты по возможностям API Direct3D. Разработчики могли выбирать визуальные эффекты из списка, после чего проверять их работу в игре. Следующим важным шагом в программировании графики стал DirectX 8. В нём появилась возможность программировать видеокарту с помощью шейдеров, поэтому разработчики впервые получили свободу программировать эффекты так, как им нужно. DirectX 8 поддерживал версии Pixel Shader от 1.0 до 1.3 и Vertex Shader 1.0. DirectX 8.1, обновлённая версия DirectX 8, получила Pixel Shader 1.4 и Vertex Shader 1.1.

В DirectX 9 можно создавать ещё более сложные программы-шейдеры. DirectX 9 поддерживает Pixel Shader 2.0 и Vertex Shader 2.0. DirectX 9c, обновлённая версия DirectX 9, включила спецификацию Pixel Shader 3.0.

DirectX 10, грядущая версия API, будет сопровождать новую версию Windows Vista. На Windows XP установить DirectX 10 не получится.

HDR-освещение и OpenEXR HDR

HDR расшифровывается как «High Dynamic Range», высокий динамический диапазон. Игра с HDR-освещением может дать намного более реалистичную картинку, чем игра без такового, причём не все видеокарты поддерживают HDR-освещение.

Перед появлением видеокарт класса DirectX 9 графические процессоры были серьёзно ограничены точностью вычислений освещения. До сих пор освещение можно было рассчитывать только с 256 (8 бит) внутренними уровнями.

Когда появились видеокарты класса DirectX 9, они получили возможность выдавать освещение с высокой точностью — полные 24 бита или 16,7 млн. уровней.

С 16,7 млн. уровней и после того, как был сделан следующий шаг по производительности видеокарт класса DirectX 9/Shader Model 2.0, на компьютерах стало возможным и HDR-освещение. Это довольно сложная технология, и смотреть её нужно в динамике. Если говорить простыми словами, то HDR-освещение увеличивает контрастность (тёмные оттенки выглядят темнее, светлые — светлее), в то же время повышая количество деталей освещения на тёмных и светлых областях. Игра с HDR-освещением кажется более живой и реалистичной, чем без него.

Графические процессоры, соответствующие последней спецификации Pixel Shader 3.0, позволяют рассчитывать освещение с более высокой 32-битной точностью, а также выполнять смешение (blending) с плавающей запятой. Таким образом, видеокарты класса SM 3.0 могут поддерживать специальный метод HDR-освещения OpenEXR, специально разработанный для киноиндустрии.

Некоторые игры, которые поддерживают только HDR-освещение методом OpenEXR, не пойдут с HDR-освещением на видеокартах Shader Model 2.0. Впрочем, игры, которые не опираются на метод OpenEXR, будут работать на любой видеокарте DirectX 9. Например, Oblivion использует метод OpenEXR HDR и позволяет включать HDR-освещение только на новейших видеокартах, которые поддерживают спецификацию Shader Model 3.0. Например, nVidia GeForce 6800 или ATi Radeon X1800. Игры, которые используют 3D-движок Half-Life 2, та же Counter-Strike: Source и грядущая Half-Life 2: Aftermath, позволяют включать HDR-рендеринг на старых видеокартах DirectX 9, которые поддерживают только Pixel Shader 2.0. В качестве примеров можно привести линейку GeForce 5 или ATi Radeon 9500.

Наконец, следует учитывать, что все формы HDR-рендеринга требуют серьёзной вычислительной мощности и могут поставить даже самые мощные графические процессоры «на колени». Если вы хотите играть в новейшие игры с HDR-освещением, то без высокопроизводительной графики не обойтись.

Полноэкранное сглаживание

Полноэкранное сглаживание (сокращённо AA) позволяет устранить характерные «лесенки» на границах полигонов. Но следует учитывать, что полноэкранное сглаживание потребляет немало вычислительных ресурсов, что приводит к падению частоты кадров.

Сглаживание очень сильно зависит от производительности видеопамяти, поэтому скоростная видеокарта с быстрой памятью сможет просчитать полноэкранное сглаживание с меньшим ущербом для производительности, чем недорогая видеокарта. Сглаживание можно включать в различных режимах. Например, сглаживание 4x даст более качественную картинку, чем сглаживание 2x, но это будет большим ударом по производительности. Если сглаживание 2x удваивает горизонтальное и вертикальное разрешение, режим 4x его учетверяет.

Текстурная фильтрация

На все 3D-объекты в игре накладываются текстуры, причём, чем больше угол отображаемой поверхности, тем более искажённой будет выглядеть текстура. Чтобы устранить этот эффект, графические процессоры используют фильтрацию текстур.

Первый способ фильтрации назывался билинейным и давал характерные полоски, которые были не очень-то приятны глазу. Ситуация улучшилась с внедрением трилинейной фильтрации. Обе опции на современных видеокартах работают практически без ущерба производительности.

На сегодня самым лучшим способом фильтрации текстур является анизотропная фильтрация (AF). Подобно полноэкранному сглаживанию, анизотропную фильтрацию можно включать на разных уровнях. Например, 8x AF даёт более высокое качество фильтрации, чем 4x AF. Как и полноэкранное сглаживание, анизотропная фильтрация требует определённой вычислительной мощности, которая увеличивается по мере повышения уровня AF.

Текстуры высокого разрешения

Все 3D-игры создаются с учётом конкретных спецификаций, и одно из таких требований определяет текстурную память, которая понадобится игре. Все нужные текстуры должны умещаться в память видеокарты во время игры, иначе производительность будет сильно падать, поскольку обращение за текстурой в оперативную память даёт немалую задержку, не говоря уже о файле подкачки на жёстком диске. Поэтому, если разработчик игры рассчитывает на 128 Мбайт видеопамяти как минимальное требование, то набор активных текстур не должен превышать 128 Мбайт в любое время.

У современных игр есть несколько наборов текстур, так что игра без проблем будет работать на старых видеокартах с меньшим количеством видеопамяти, а также и на новых картах с большим объёмом видеопамяти. Например, игра может содержать три набора текстур: для 128 Мбайт, 256 Мбайт и 512 Мбайт. Игр, которые поддерживают 512 Мбайт видеопамяти, сегодня очень мало, но они всё же являются самой объективной причиной для покупки видеокарты с таким объёмом памяти. Хотя увеличение объёма памяти практически не сказывается на производительности, вы получите улучшение визуального качества, если игра поддерживает соответствующий набор текстур.

Что нужно знать о видеокартах?

Вконтакте

Диспетчер задач Windows 10 содержит подробные инструменты мониторинга графического процессора (GPU ). Вы можете просматривать использование каждого приложения и общесистемного графического процессора, а Microsoft обещает, что показатели диспетчера задач будут более точными, чем показатели сторонних утилит.

Как это работает

Эти функции графического процессора были добавлены в обновлении Fall Creators для Windows 10 , также известном как Windows 10 версия 1709 . Если вы используете Windows 7, 8 или более старую версию Windows 10, вы не увидите эти инструменты в своем диспетчере задач.

Windows использует более новые функции в Windows Display Driver Model, чтобы извлекать информацию непосредственно из графического процессора (VidSCH) и менеджера видеопамяти (VidMm) в графическом ядре WDDM, которые отвечают за фактическое распределение ресурсов. Он показывает очень точные данные независимо от того, какие приложения API используют для доступа к GPU-Microsoft DirectX, OpenGL, Vulkan, OpenCL, NVIDIA CUDA, AMD Mantle или чему-либо еще.

Именно поэтому в диспетчере задач отображаются только системы с совместимыми с WDDM 2.0 графическими процессорами . Если вы этого не видите, графический процессор вашей системы, вероятно, использует более старый тип драйвера.

Вы можете проверить, какая версия WDDM используется вашим драйвером GPU , нажав кнопку Windows+R, набрав в поле «dxdiag », а затем нажмите «Enter », чтобы открыть инструмент «Средство диагностики DirectX ». Перейдите на вкладку «Экран » и посмотрите справа от «Модель » в разделе «Драйверы ». Если вы видите здесь драйвер WDDM 2.x, ваша система совместима. Если вы видите здесь драйвер WDDM 1.x, ваш GPU несовместим.

Как просмотреть производительность графического процессора

Эта информация доступна в диспетчере задач , хотя по умолчанию она скрыта. Чтобы открыть ее, откройте Диспетчер задач , щелкнув правой кнопкой мыши на любом пустом месте на панели задач и выбрав «Диспетчер задач » или нажав Ctrl+Shift+Esc на клавиатуре.

Нажмите кнопку «Подробнее » в нижней части окна «Диспетчер задач », если вы видите стандартный простой вид.

Если GPU не отображается в диспетчере задач , в полноэкранном режиме на вкладке «Процессы » щелкните правой кнопкой мыши любой заголовок столбца, а затем включите опцию «Графический процессор ». Это добавит столбец графического процессора , который позволяет увидеть процент ресурсов графического процессора , используемых каждым приложением.

Вы также можете включить опцию «Ядро графического процессора », чтобы увидеть, какой графический процессор использует приложение.

Общее использование GPU всех приложений в вашей системе отображается в верхней части столбца Графического процессора . Щелкните столбец GPU , чтобы отсортировать список и посмотреть, какие приложения используют ваш GPU больше всего на данный момент.

Число в столбце Графический процессор - это самое высокое использование, которое приложение использует для всех движков. Так, например, если приложение использует 50% 3D-движка GPU и 2% декодирования видео движка GPU, вы просто увидите, что в столбце GPU отображается число 50%.

В столбце «Ядро графического процессора » отображается каждое приложение. Это показывает вам, какой физический GPU и какой движок использует приложение, например, использует ли он 3D-движок или механизм декодирования видео. Вы можете определить, какой графический процессор соответствует определенному показателю, проверив вкладку «Производительность », о которой мы поговорим в следующем разделе.

Как просмотреть использование видеопамяти приложения

Если вам интересно, сколько видеопамяти используется приложением, вам нужно перейти на вкладку «Подробности » в диспетчере задач. На вкладке «Подробности » щелкните правой кнопкой мыши любой заголовок столбца и выберите «Выбрать столбцы ». Прокрутите вниз и включите колонки «Графический процессор », «Ядро графического процессора », « » и « ». Первые два доступны также на вкладке «Процессы », но последние две опции памяти доступны только на панели «Подробности ».

Столбец «Выделенная память графического процессора » показывает, сколько памяти приложение использует на вашем GPU . Если на вашем ПК установлена дискретная видеокарта NVIDIA или AMD, то это часть его VRAM, то есть сколько физической памяти на вашей видеокарте использует приложение. Если у вас встроенный графический процессор , часть вашей обычной системной памяти зарезервирована исключительно для вашего графического оборудования. Это показывает, какая часть зарезервированной памяти используется приложением.

Windows также позволяет приложениям хранить некоторые данные в обычной системной памяти DRAM. Столбец «Общая память графического процессора » показывает, сколько памяти приложение использует в настоящее время для видеоустройств из обычной системной ОЗУ компьютера.

Вы можете щелкнуть любой из столбцов для сортировки по ним и посмотреть, какое приложение использует больше всего ресурсов. Например, чтобы просмотреть приложения, использующие наибольшую видеопамять на вашем графическом процессоре, щелкните столбец «Выделенная память графического процессора ».

Как отследить использование общего ресурса GPU

Чтобы отслеживать общую статистику использования ресурсов GPU , перейдите на вкладку «Производительность » и посмотрите на «Графический процессор » внизу на боковой панели. Если на вашем компьютере несколько графических процессоров, здесь вы увидите несколько вариантов GPU .

Если у вас несколько связанных графических процессоров - используя такую функцию, как NVIDIA SLI или AMD Crossfire, вы увидите их, идентифицированные «#» в их имени.

Windows отображает использование GPU в реальном времени. По умолчанию диспетчер задач пытается отобразить самые интересные четыре движка в соответствии с тем, что происходит в вашей системе. Например, вы увидите разные графики в зависимости от того, играете ли вы в 3D-игры или кодируете видео. Однако вы можете щелкнуть любое из имен над графиками и выбрать любой из других доступных движков.

Название вашего GPU также отображается на боковой панели и в верхней части этого окна, что позволяет легко проверить, какое графическое оборудование установлено на вашем ПК.

Вы также увидите графики использования выделенной и общей памяти GPU . Использование общей памяти GPU относится к тому, какая часть общей памяти системы используется для задач GPU . Эта память может использоваться как для обычных системных задач, так и для видеозаписей.

В нижней части окна вы увидите информацию, такую как номер версии установленного видеодрайвера, дату разработки и физическое местоположение GPU в вашей системе.

Если вы хотите просмотреть эту информацию в более маленьком окне, которое проще оставить на экране, дважды щелкните где-нибудь внутри экрана графического процессора или щелкните правой кнопкой мыши в любом месте внутри него и выберите параметр «Графическая сводка ». Вы можете развернуть окно, дважды щелкнув на панели или щелкнув правой кнопкой мыши в нем и сняв флажок «Графическая сводка ».

Вы также можете щелкнуть правой кнопкой мыши по графику и выбрать «Изменить график »> «Одно ядро », чтобы просмотреть только один график движка GPU .

Чтобы это окно постоянно отображалось на вашем экране, нажмите «Параметры »> «Поверх остальных окон ».

Дважды щелкните внутри панели GPU еще раз, и у вас будет минимальное окно, которое вы можете расположить в любом месте на экране.

Доброго всем времени суток, мои дорогие друзья и гости моего блога. Сегодня я бы хотел поговорить немного об аппаратной части наших компьютеров. Скажите пожалуйста, вы слышали про такое понятие как GPU? Оказывается просто многие впервые слышат такую аббревиатуру.

Как бы банально это не звучало, но сегодня мы живем в эру компьютерных технологий, и порой сложно найти человека, который понятия не имеет, как работает компьютер. Так, например, кому-то достаточно осознания, что компьютер работает благодаря центральному процессору (CPU).

Кто-то пойдет дальше и узнает, что есть ещё и некий GPU. Такая замысловатая аббревиатура, но похожая на предыдущую. Так давайте же разберемся, что такое GPU в компьютере, какие они бывают и какие различия есть у него с CPU.

Небольшая разница

Простыми словами, GPU - это графический процессор, иногда его именуют видеокартой, что отчасти является ошибкой. Видеокарта - это готовое компонентное устройство, в состав которого как раз и входит нами описываемый процессор. Он способен обрабатывать команды для формирования трёхмерной графики. Стоит отметить, что он является для этого ключевым элементом, от его мощности зависит быстродействие и различные возможности видеосистемы в целом.

Графический процессор имеет свои отличительные особенности по сравнению с его собратом CPU. Основное различие кроется в архитектуре, на которой он построен. Архитектура GPU построена таким образом, что позволяет обрабатывать большие массивы данных более эффективно. CPU, в свою очередь, обрабатывает данные и задачи последовательно. Естественно, не стоит воспринимать эту особенность как минус.

Виды графических процессоров

Существует не так много видов графических процессоров, один из них именуется, как дискретный, и применяется на отдельных модулях. Такой чип достаточно мощный, поэтому для него требуется система охлаждения из радиаторов, кулеров, в особо нагруженных системах может применяться жидкостное охлаждение.

Сегодня мы можем наблюдать значительный шаг в развитие графических компонентов, это обуславливается появлением большого количества видов GPU. Если раньше любой компьютер приходилось снабжать дискретной графикой, чтобы иметь доступ к играм или другим графическим приложениям, то сейчас такую задачу может выполнять IGP - интегрированный графический процессор.

Интегрированной графикой сейчас снабжают практически каждый компьютер (за исключением серверов), будь то, ноутбук или настольный компьютер. Сам видео-процессор встроен в CPU, что позволяет значительно снизить энергопотребление и саму цену устройства. Кроме того, такая графика может быть и в других подвидах, например: дискретная или гибридно-дискретная.

Первый вариант подразумевает наиболее дорогое решение, распайку на материнской плате или же отдельный мобильный модуль. Второй вариант называется гибридным неспроста, фактически он использует видеопамять небольшого размера, которая распаяна на плате, но при этом способен расширять её за счёт оперативной памяти.

Естественно, такие графические решения не могут поравняться с полноценными дискретными видеокартами, но уже сейчас показывает достаточно хорошие показатели. В любом случае, разработчикам есть куда стремиться, возможно за таким решением будущее.

Ну а на этом у меня, пожалуй, все. Надеюсь, что статья вам понравилась! Жду вас снова у себя на блоге в гостях. Удачи вам. Пока-пока!