Прибор позволяет измерять сопротивление от 1 Ома до 10 МОм, емкость от 100 пФ до 1000 мкФ, индуктивность от 10 мГ до 1000 Г на семи диапазонах, выбираемых переключателем SA1 в соответствии с таблицей, изображенной на передней панели.

Принцип работы простого измерителя RCL, предложенного Александром Маньковским, основан на балансе моста переменного тока. Балансируют мост переменным резистором R11, ориентируясь на минимум показаний микроамперметра Р2 или внешнего вольтметра переменного тока, подключаемого к клеммам Р1. Измеряемый резистор, конденсатор или катушку индуктивности подключают к клеммам Х1, Х2, предварительно установив переключатель SA3 в положение R, С или L. В качестве R11 применен проволочный резистор ППБ-ЗА.

Градуировку его шкалы (см. эскиз передней панели прибора на рис.2) осуществляют следующим образом. SA3 переводят в положение «R», SA1 -«3», а к зажимам Х1, Х2 поочередно подключают образцовые резисторы сопротивлением 100, 200, 300, ... 1000 Ом и при каждом балансе моста ставят соответствующую отметку. Емкость конденсатора С1 подбирают по балансу моста (минимуму отклонения стрелки Р2), установив SA3 в положение «С», SA1 - «5», R11 - на отметку «1», а к зажимам Х1, Х2 подключив образцовый конденсатор емкостью 0,01 мкФ. Сетевой трансформатор Т1 должен иметь вторичную обмотку на 18 В при токе до 1 А.

Прибор позволяет измерять сопротивление от 1 Ома до 10 МОм, емкость от 100 пФ до 1000 мкФ, индуктивность от 10 мГ до 1000 Г на семи диапазонах, выбираемых переключателем SA1 в соответствии с таблицей, изображенной на передней панели рис.2

Радиолюбитель №9/2010, с. 18, 19.

Программа для измерения сопротивления, индуктивности и емкости неизвестных электронных компонентов.
Требует изготовления простейшего переходника для подключения к звуковой карте компьютера (два штеккера, резистор, провода и щупы).

Download the single-frequency version - Скачать программу v1.11 (архив 175 кБ, одна рабочая частота).
Download the double-frequency version - Скачать программу v2.16 (архив 174 кБ, две рабочих частоты).

Это еще один вариант, пополняющий и без того обширную коллекцию аналогичных программ. Здесь не воплощены все задумки, работа над которыми продолжается. Функционирование «основы» вы можете оценить прямо сейчас.

В основу заложен общеизвестный принцип определения амплитудных и фазовых соотношений между сигналами с известного (образцовогоо) компонента, и с компонента, параметры которого надо определить. В качестве тестового используется сигнал синусоидальной формы, генерируемый звуковой картой. В первой версии программы использовалась только одна фиксированная частота 11025 Гц, в следующей версии к ней добавилась вторая (в 10 раз меньшая). Это позволило расширить верхние границы измерений для емкостей и индуктивностей.

Выбор именно этой частоты (четверть от частоты сэмлинга) является главной «инновацией», отличающей этот проект от остальных. На такой частоте алгоритм интегрирования по-Фурье (не путать с БПФ - быстрым преобразованием Фурье) максимально упрощается, а нежелательные побочные эффекты, приводящие к росту шума в измеряемом параметре, полностью пропадают. В итоге кардинально улучшается быстродействие и снижается разброс показаний (особо ярко выраженный на краях диапазонов). Это позволяет расширить диапазоны измерений и обойтись только одним образцовым элементом (резистором).

Собрав схему согласно рисунку и установив регуляторы уровня Windows в оптимальное положение, а также произведя начальную калибровку по закороченным между собой щупам («Cal.0»), можно сразу же приступать к измерениям. С такой калибровкой без труда ловятся низкие сопротивления, в том числе ESR, порядка 0,001 ом, а СКО (среднеквадратическое отклонение) результатов измерений в этом случае составляет порядка 0,0003 ом. Если зафиксировать положение проводов (чтобы не менялась их индуктивность), то можно «ловить» индуктивности порядка 5 нГн. Калибровку «Cal.0» желательно проводить после каждого старта программы, поскольку положение регуляторов уровня в среде Windows может быть, в общем случае, непредсказуемым.

Чтобы расширить диапазон измерений в область больших R, L и малых C, требуется учитывать входное сопротивление звуковой карты. Для этого служит кнопка «Cal.^», нажимать на которую надо при разомкнутых между собой щупах. После такой калибровки можно достичь следующих диапазонов измерений (при нормировании случайной составляющей погрешности на краях диапазонов на уровне 10%):

  • по R - 0.01 ом... 3 Мом,
  • по L - 100 нГн... 100 Гн,
  • по C - 10 пФ... 10 000 мкФ (для версии с двумя рабочими частотами)

Минимальная погрешность измерения определяется допуском образцового резистора. Если предполагается использование обычного ширпотребовского резистора (и даже с номиналом, отличным от указанного), в программе предусмотрена возможность его калибровки. Соответствующая кнопка «Cal.R» становится активной при переходе в режим «Ref.» Величина резистора, который будет использоваться в качестве эталонного, задается в файле *.ini в качестве значения параметра «CE_real». После калибровки уточненные характеристики образцового резистора запишутся в виде новых значений параметров «CR_real» и «CR_imag» (в 2-х частотной версии параметры измеряются на двух частотах).

С регуляторами уровня программа напрямую не работает - пользуйтесь стандартным микшером Windows или аналогичным. Шкала «Level» служит для настройки оптимального положения регуляторов. Здесь можно порекомендовать такую методику настройки:

1. Определиться, какой регулятор отвечают за уровень воспроизведения, а какой - за уровень записи. Остальные регуляторы желательно заглушить для минимизации вносимых ими шумов. Регуляторы балланса - в среднее положение.
2. Исключить прегрузку по выходу. Для этого, установив регулятор записи в положение ниже среднего, с помощью регулятора воспроизведения найти ту точку, где ограничивается рост столбика «Level», а затем немного отступить назад. Скорее всего перегрузки вообще не будет, но для надежности регулятор лучше не выводить на отметку «макс».
3. Исключить прегрузку по входу - регулятором уровня записи сделать так, чтобы столбик «Level» не доходил до конца шкалы (оптимальное положение - 70...90%) в отсутствии измеряемого компонента, т.е. при разомкнутых щупах.
4. Замыкание щупов между собой не должно приводить к сильной просадке уровня. Если это так, то выходные усилители звуковой карты слишком слабы для данной задачи (иногда решается настройками карты).

Требования к системе

  • ОС семейства Windows (тестировалась под Windows XP),
  • поддержка звука 44,1 ksps, 16 bit, stereo,
  • наличие одного аудио устройства в системе (если окажется несколько, то программа будет работать с первым из них, и не факт, что у веб-камеры окажутся гнезда «Line In» и «Line Out»).

Особенности измерений, или чтобы не попасть впростак

Любой измерительный инструмент требует знания его возможностей и умения правильно интерпретировать результат. Например, при использовании мультиметра стоит задуматься, а какое переменное напряжение он, собственно, меряет (при отличии формы от синусоидальной)?

В 2-х частотной версии для измерения больших емкостей и индуктивностей используется низкая (1,1 кГц) частота. Граница перехода отмечена сменой цвета шкалы с зеленого на желтый. Аналогично меняется и цвет показаний - с зеленого на желтый при переходе к измерениям на низкой частоте.

Стереофонический вход звуковой карты позволяет организовать «четырехпроводную» схему подключения только для измеряемого компонента, схема же подключения эталонного резистора остается «двухпроводной». При таком раскладе любая нестабильность контакта разъема (в нашем случае - земляного) может исказить результат измерения. Ситуацию спасает относительно большая величина сопротивления эталонного резистора по сравнению к нестабильностью сопротивления контакта - 100 ом против долей ома.

И последнее. Если измеряемый компонет - конденсатор, то он может оказаться заряженным! Даже разряженный электролитический конденсатор со временем может «собрать» оставшийся заряд. Схема не имеет защиты, так что вы рискуете вывести из строя свою звуковую карту, а в худшем случае - сам компьютер. Сказанное относится и к тестированию компонетов в устройстве, тем более - необесточенном.

Огромная подборка схем, руководств, инструкций и другой документации на различные виды измерительной техники заводского изготовления: мультиметры, осциллографы, анализаторы спектра, аттенюаторы, генераторы, измерители R-L-C, АЧХ, нелинейных искажений, сопротивлений, частотомеры, калибраторы и многое другое измерительное оборудование.

В процессе эксплуатации внутри оксидных конденсаторов постоянно происходят электрохимические процессы, разрушающие место соединения вывода с обкладками. И из-за этого появляется переходное сопротивление, достигающее иногда десятков Ом. Токи Заряда и разряда вызывают нагрев этого места, что еще больше ускоряет процесс разрушения. Еще одной частой причиной выхода из строя электролитических конденсаторов является "высыхание", электролита. Чтоб уметь отбраковывать такие конденсаторы предлагаем радиолюбителям собрать эту несложную схему

Идентификация и проверка стабилитронов оказывается несколько сложнее чем проверка диодов, т.к для этого нужен источник напряжения, превышающий напряжение стабилизации.

С помощью этой самодельной приставки вы сможете одновременно наблюдать на экране однолучевого осциллографа сразу за восемью низкочастотными или импульсными процессами. Максимальная частота входных сигналов не должна превышать 1 МГц. По амплитуде сигналы должны не сильно отличаться, по крайней мере, не должно быть более 3-5-кратного отличия.

Устройство расчитано на проверку почти всех отечественных цифровых интегральных микросхем. Им можно проверить микросхемы серий К155, К158, К131, К133, К531, К533, К555, КР1531, КР1533, К176, К511, К561, К1109 и многие другие

Помимо измерения емкости, эту приставку можно использовать для измерения Uстаб у стабилитронов и проверки полупроводниковых приборов, транзисторов, диодов. Кроме того можно проверять высоковольтные конденсаторы на токи утечки, что весьма помогло мне при налаживание силового инвертора к одному медицинскому прибору

Эта приставка к частотомеру используется для оценки и измерения индуктивности в диапазоне от 0,2 мкГн до 4 Гн. А если из схемы исключить конденсатор С1 то при подключении на вход приставки катушки с конденсатором, на выходе будет резонансная частота. Кроме того, благодаря малому значению напряжения на контуре можно оценивать индуктивность катушки непосредственно в схеме, без демонтажа, я думаю многие ремонтники оценят эту возможность.

В интернете много разных схем цифровых термометров, но мы выбрали те которые отличается своей простотой, малым количеством радиоэлементов и надежностью, а пугаться того, что она собрана на микроконтроллере не стоит, т.к его очень легко запрограммировать.

Одну из схем самодельного индикатора температуры со светодиодным индикатором на датчике LM35 можно использовать для визуальной индикации плюсовых значений температуры внутри холодильника и двигателя автомобиля, а также воды в аквариуме или бассейне и т.п. Индикация выполнена на десяти обычных светодиодах подключенных к специализированной микросхеме LM3914 которая используется для включения индикаторов с линейной шкалой, и все внутренние сопротивления ее делителя обладают одинаковыми номиналами

Если перед вами встанет вопрос как измерить частоту вращения двигателя от стиральной машины. Мы подскажем простой ответ. Конечно можно собрать простой стробоскоп, но существует и более грамотная идея, например использованием датчика Холла

Две очень простые схемы часов на микроконтроллере PIC и AVR. Основа первой схемы микроконтроллер AVR Attiny2313, а второй PIC16F628A

Итак, хочу сегодня рассмотреть очередной проект на микроконтроллерах, но еще и очень полезный в ежедневных трудовых буднях радиолюбителя. Это цифровой вольтметр на микроконтроллере. Схема его была позаимствована из журнала радио за 2010 год и может быть с легкостью переделана под амперметр.

Эта конструкция описывает простой вольтметр, с индикатороми на двенадцати светодиодах. Данное измерительное устройство позволяет отображать измеряемое напряжение в диапазоне значений от 0 до 12 вольт с шагом в 1 вольт, причем погрешность в измерении очень низкая.

Рассмотрена схема измерителя индуктивности катушек и емкости конденсаторов, выполненная всего на пяти транзисторах и, несмотря на свою простоту и доступность, позволяет в большом диапазоне определять с приемлемой точностью емкость и индуктивность катушек. Имеется четыре поддиапазона для конденсаторов и целых пять поддиапазонов катушек.

Думаю большинству понятно, что звучание системы во многом определяется различным уровнем сигнала на ее отдельных участках. Контролируя эти места, мы можем оценить динамику работы различных функциональных узлов системы: получить косвенные данные о коэффициенте усиления, вносимых искажениях и т.п. Кроме того, результирующий сигнал просто не всегда можно прослушать, поэтому и, применяются различного рода индикаторы уровня.

В электронных конструкциях и системах встречаются неисправности, которые возникают достаточно редко и их очень сложно вычислить. Предлагаемое самодельное измерительное устройство используется для поиска возможных контактных проблем, а также дает возможность проверять состояние кабелей и отдельных жил в них.

Основой этой схемы является микроконтроллер AVR ATmega32. ЖК дисплей с разрешением 128 х 64 точек. Схема осциллографа на микроконтроллере предельно проста. Но есть один существенный минус - это достаточно низкая частота измеряемого сигнала, всего лишь 5 кГц.

Эта приставка здорово облегчит жизнь радиолюбителя, в случае если у него появится необходимость в намотке самодельной катушки индуктивности, или для определения неизвестных параметров катушки в какой либо аппаратуре.

Предлагаем вам повторить электронную часть схемы весов на микроконтроллере с тензодатчиком, прошивка и чертеж печатной платы к радиолюбительской разработке прилагаеться.

Самодельный измерительный тестер обладает следующими Функциональными возможностями: измерение частоты в диапазоне от 0.1 до 15000000 Гц с возможностью изменения времени измерения и отображением значение частоты и длительности на цифровом экране. Наличие опции генератора с возможностью регулировки частоты во всем диапазоне от 1-100 Гц и выводом результатов на дисплей. Наличие опции осциллограф с возможностью визуализации формы сигнала и измерения его амплитудного значения. Функция измерения емкости, сопротивления, а также напряжения в режиме осциллографа.

Простым методом измерения тока в электрической цепи является способ измерение падения напряжения на резисторе, соединенным последовательно с нагрузкой. Но при протекании тока через это сопротивление, на нем генерируется ненужная мощность в виде тепла, поэтому его необходимо выбрать минимально возможной величиной, что ощутимо усиливает полезный сигнал. Следует добавить, что рассмотренные ниже схемы позволяют отлично измерять не только постоянный, но и импульсный ток, правда, с некоторым искажением, определяемый полосой пропускания усилительных компонентов.

Устройство используется для измерения температуры и относительной влажности воздуха. В качестве первичного преобразователя взят датчик влажности и температуры DHT-11. Самодельный измерительный прибор можно использовать в складских и жилых помещениях для мониторинга температуры и влажности, при условии, что не требуется высокая точность результатов измерений.

В основном для измерения температуры применяются температурные датчики. Они имеют различные параметры, стоимость и формы исполнения. Но у них имеется один большой минус, ограничивающий практику их использования в некоторых местах с большой температурой среды объекта измерения с температурой выше +125 градусов по Цельсию. В этих случаях намного выгоднее использовать термопары.

Схема межвиткового тестора и его работа довольна проста и доступна для сборки даже начинающими электронщиками. Благодаря этому прибору сможно проверить практически любые трансформаторы, генераторы, дроссели и катушеки индуктивности номиналом от 200 мкГн до 2 Гн. Индикатор способен определить не только целостность исследуемой обмотки, но и отлично выявляет межвитковое замыкание, а кроме того им можно проверить p-n переходы у кремниевых полупроводниковых диодов.

Для измерения такой электротехнической величины, как сопротивление используется измерительный прибор называемый Омметр. Приборы, измеряющие только одно сопротивление, в радиолюбительской практике используются достаточно редко. Основная масса пользуется типовым мультиметров в режиме измерения сопротивления. В рамках данной темы рассмотрим простую схему Омметра из журнала Радио и еще более простую на плате Arduino.

Мы постарались сделать так,

Чтобы Вы получили удовольствие

Как от сборки и настройки этого прибора,

Так и от его эксплуатации.

Олег, Павел

1. Технические характеристики

Измеряемый параметр

Частота тест-сигнала

100Гц

1кГц

10кГц

R

0.01 Ом – 100 МОм

0.01 Ом – 100 МОм

0.01 Ом – 10 МОм

C

1пФ – 22000мкФ

0.1пФ – 2200мкФ

0.01пФ – 220мкФ

L

0.01мкГн – 20 кГн

0.1мкГн – 2 кГн

0.01 мкГн – 200Гн

Режимы работы:

  • частота тест-сигнала 100Гц, 1кГц, 10кГц;
  • амплитуда тест-сигнала 0.3В;
  • последовательная/параллельная (s/p) схема замещения;
  • автоматический/ручной выбор диапазона измерений;
  • режим удержания показаний;
  • компенсация параметров КЗ и ХХ;
  • отображение результатов измерений в виде:

R + LC

R + X

Q + LC (добротность)

D + LC (tg угла потерь)

  • подача постоянного напряжения смещения на тестируемый элемент 0-30В (от внутреннего источника);
  • измерение напряжения смещения (0.4В-44В);
  • подача постоянного тока смещения на тестируемый элемент (от внешнего источника):
  • отладочный режим.

Максимальное время измерения на:

  • 100Гц – 1.6с;
  • 1кГц, 10кГц – 0.64с.

2. Принцип работы

В основе работы прибора лежит метод вольтметра и амперметра, т.е. измеряется падение напряжения на тестируемом элементе и ток через него, а Zx рассчитывается как Zx=U/I. Разумеется, значения тока и напряжения надо получить в комплексном виде. Для измерения реальной (Re) и мнимой (Im) составляющих напряжения и тока используется синхронный детектор (СД), работа которого в свою очередь синхронизирована с тестовым сигналом. Подавая на управление ключами СД меандр с сдвигом 0º или 90º относительно тестового сигнала, получаем искомые Re и Im части напряжения и тока. Таким образом, для одного измерения Zx необходимо выполнить четыре измерения, два для тока и два для напряжения. Преобразованием сигнала с СД в цифровую форму занимается АЦП двойного интегрирования. Выбор такого типа АЦП обусловлен его низкой чувствительностью к помехам, и тем, что интегратор АЦП играет роль дополнительного фильтра сигнала после СД. Тестовый сигнал получается из меандра после ФНЧ1 (фильтр низкой частоты на переключаемых конденсаторах) и ФНЧ2 (обычный двойной RC фильтр), который убирает остатки частоты F*100.

В приборе для измерения тока применен активный (на ОУ) преобразователь ток-напряжение. Руководствуясь принципом «мало-нормально-много», МК управляет выбором R range и Ку усилителя согласно представленной ниже таблице, добиваясь максимальных показаний АЦП:

Диапазон R range Ку для тока

Ку для напряжения

100 Ом 1 100
1 100 Ом 1 10
2 100 Ом 1 1
3 1 1
4 10к 1 1
5 100к 1 1
6 100к 10 1
7 100к 100 1

3. Схема

Схема разделена на три части:

  • аналоговая часть;
  • цифровая часть;
  • блок питания.

Вложения:
[Схема и рисунки плат ] 187 kB
[Платы от Игоря] 2372 kB
[Схема] 172 kB
41 kB
50 kB
50 kB
69 kB
69 kB

Комментарии к версии 1.1 Комментарии к версии 1.2 Комментарии к версии 1.3 История версии

Ничего не рождается на пустом месте, так в нашем случае. Часть узлов и идей были “позаимствованы” от схем промышленных приборов, имеющихся в свободном доступе – LCR-4080 (Е7-22), RLC-9000, RLC-817, Е7-20.

Прибор работает следующим образом.

Микроконтроллером (МК) PIC16F876A формируется SinClk (RC2, выв.13) меандр частотой 10кГц, 100кГц или 1MГц. Cигнал подается на вход делителя, выполненного на микросхемах DD12 и DD13. На выв.10 DD12 получаем частоту SinClk/25, которая в свою очередь дополнительно делится на 4. На выходах сдвигового регистра получаются сигналы, сдвинутые относительно друг друга на 90º, необходимые для работы СД. Сигнал 0_Clk подается на микросхему DA6, представляющую собой эллиптический фильтр 8-го порядка. Этим фильтром выделяется первая гармоника. Частота среза фильтра определяется частотой сигнала, подаваемого на ифровой вход (выв.1 DA6). Полученный синусоидальный сигнал (первая гармоника) дополнительно фильтруется двойной RC-цепочкой R39, C27, R31, C20. На нижних диапазонах 1кГц и 100Гц подключаются дополнительно соответственно C28, C21 и C26, C25. После выходного буфера на DA3 синусоидальный сигнал через ограничительные резисторы R16, R5 и разделительный конденсатор C5 поступает на Zx. Амплитуда тестового сигнала на холостом ходу примерно 0.3В.

Падение напряжения на Zx (канал напряжения) снимается через конденсаторы C6 и C7 и подается на вход инструментального ОУ (ИОУ), выполненного на DA4.2, DA4.3 и DA4.4. Коэффициент усиления этого ИОУ определяется соотношением R28/R22=R27/R23=10k/2k=5. Через аналоговый ключ DA7.3 сигнал подается на усилитель с переменным Ку. Необходимый коэффициент усиления (1, 10 или 100) устанавливается сигналами управления Mul10 и Mul100. Дальше сигнал подается на СД DA9. На управление ключами СД подается меандр с частотой тестового сигнала со сдвигом 0º и 90º. Т.о.выделяется реальная и мнимая составляющая сигнала. Сигнал после ключей СД интегрируется цепочками R41-C30 и R42-C31 и подается на дифференциальный вход АЦП.

Ток через Zx преобразуется в напряжение на DA1 с набором из 4-х резисторов (100, 1к, 10к и 100к) в обратной связи, переключаемых с помощью DA2. Дифференциальный сигнал преобразования снимается через C18 и C17 и подается на вход ИОУ, выполненного на DA5. С его выхода сигнал поступает на аналоговый ключ DA7.3.

Опорное напряжение 0.5В АЦП получается на параметрическом стабилизаторе R59–LM385-1.2V и последующем делителе R56, R55. Тактовый сигнал АЦП AdcClk (частотой 250кГц для измерений на 1кГц и 10кГц, частотой 100кГц для 100Гц) формируется модулем USART в синхронном режиме с выхода RC5. Одновременно он подается на вывод RC0, который установлен программой как вход TMR1 в режиме счетчика. Цифровой код преобразования АЦП равен количеству импульсов AdcClk минус 10001 за время, пока сигнал Busy АЦП находится в „1”. Эта особенность используется ввода в МК результатов преобразования АЦП. Сигнал Busy подается на вывод RC1, который настроен как вход модуля сравнения и захвата МК (CPP). С его помощью запоминается значение TMR1 при положительном фронте сигнала Busy, а потом при отрицательном. Вычитая эти два значения, получаем искомый результат работы АЦП.

4.Детали

Мы старались выбирать детали исходя из критерия их доступности, максимальной простоты и повторяемости схемы. На наш взгляд единственная дефицитная микросхема - это MAX293. Но ее применение позволило значительно упростить узел, формирующий опорный синусоидальный сигнал (по сравнению с аналогичным узлом, скажем, в RLC4080). Мы также старались уменьшить разнообразие типов применяемых микросхем, номиналов резисторов и конденсаторов.

Требования к деталям.

Разделительные конденсаторы C6, C7, C17, C18, C29, C36, С34, С35, С30, С31 должны быть пленочные типа MKP10, MKP2, К73-9, К73-17 или т.п., первые четыре на напряжение минимум 250В, для С29, С36, С34, С35, С30, С31 достаточно 63В.

Самый критичный по своим параметрам элемент - это интегрирующий конденсатор C33. Он должен иметь низкие показатели диэлектрической абсорбции. Исходя из описания на ICL7135, необходимо применить конденсатор либо с полипропиленовым, либо с тефлоновым диэлектриком. Широко распространенные К73-17 в качестве интегрирующего конденсатора дают ошибку 8-10 единиц АЦП в середине шкалы, что совершенно неприемлемо. Необходимые конденсаторы с полипропиленовым диэлектриком были обнаружены в старых мониторах. Если будете выбирать монитор на разборку, берите с толстым видеокабелем, там хорошие гибкие изолированные экранированные провода, пойдут на изготовление щупов к прибору.

Транзисторы VT1-VT5 можно заменить практически любыми другими NPN в том же корпусе. Звуковой излучатель SP – электродинамический, от старой материнской платы. Если его сопротивление равно 50-60 Ом, то добавочное R65 можно поставить равным 0. Детали, которые рекомендуется подобрать попарно:

R41=R42, C30=C31 – для СД;

R28=R27, R22=R23 – для ИОУ напряжения;

R36=R37, R32=R33 – для ИОУ тока.

R6, R7, R8, R9 – от стабильности этих резисторов зависит тепловая и долговременная стабильность показаний прибора;

C20, C21, C25, C26, C27, C28 – особенно обратите внимание на конденсаторы номинала 0.1мкФ;

R48, R49, R57,R58 – от их соотношения зависит к-т усиления масштабирующего усилителя. ЖКИ стандартный 2х16 символов, выполнены на HD44780 или совместимым с ним контроллером. Надо отметить, что встречаются индикаторы с различной разводкой выводов 1 и 2 - земля и питание. Неправильно включение приведет к выходу ЖКИ из строя! Проверьте внимательно документацию к вашему дисплею и визуально по самой плате!

5. Конструкция

Прибор собран на трех платах:

a. Основная плата аналоговой и цифровой части;

b. Плата дисплея;

c. Блок питания.

Основная плата двухсторонняя. Верхняя сторона сплошная, служит для общей земли. Через переходные отверстия (в RLC2.lay помечены как сквозные) земля с верхнего слоя соединяется с нижним. На отверстиях под выводные детали с верхней стороны (земли) надо снять фаску сверлом 2.5мм. Сначала паяем (или проклепываем медным проводом и пропаиваем) земляные перемычки, потом выводные перемычки. Далее запаиваем SMD компоненты: резисторы, конденсаторы, диоды, транзисторы. За ним выводные детали: колодки, конденсаторы, разъемы.

Плата дисплея тоже двухсторонняя. Верхний слой земля – играет роль экрана от ЖКИ. Переходные отверстия так же служат для соединения верхнего и нижнего слоя земли.

Плату LCD желательно подключить к основной плате экранированным шлейфом. Он сделан из 4-х проводов, поверх которых поставлена обычная оплетка и изоляционная трубка. Оплетка заземляется только со стороны основной платы. Шлейф пропускают через ферритовое кольцо от какой-нибудь компьютерной техники. Т.о. уменьшаются до минимума помехи от работы LCD.

Плата БП односторонняя. Есть два варианта разводки под детали разного размера. На

платах не поставлены конденсаторы на вход (220В) трансформатора и параллельно диодам моста, разводку лучше доделать и при необходимости поставить. Особенностью платы является способ разводки земли „в одну точку”. Если будете переразводить по каким-то причинам, сохраните эту конфигурацию. Важно подобрать трансформатор с маленькими потерями (маленький ток ХХ). Перед выбором или изготовлением трансформатора рекомендуем ознакомится со статьей

В.Т. Полякова «Уменьшение поля рассеяния трансформатора», опубликованной в ж.Радио, №7 за 1983 год. Практика показала, что китайский ширпотреб без перемотки нормально не работает. Скорее всего, придется самому намотать трансформатор исходя из формулы „Витков/вольт=55-60/S”. Это не опечатка именно 55-60/S, в этом случае потери и наводки от трансформатора будут меньше. Конструкцию трансформатора желательно выбрать такой, в которой сетевая и вторичные

обмотки расположены в отдельных секциях. Это уменьшит емкость между обмотками.

5.1 Корпус

Один корпус был изготовлен из стали толщиной 1мм, другой из пластика. Если делать из пластика, плату основного блока надо экранировать. Примерные чертежи корпуса приведены в файлах “Box1.pdf” и “Box2 .pdf”.

Вложения:
[Схема и рисунки плат ] 187 kB
[Платы от Игоря] 2372 kB
[Схема] 172 kB
[Прошивка и исходники версии 1.0] 41 kB
[Прошивка и исходники версии 1.1] 50 kB
[Прошивка и исходники версии 1.1a] 50 kB
[Прошивка и исходники версии 1.2] 69 kB
[Прошивка и исходники версии 1.3] 69 kB

Кнопки LCD „удлиняем” толстым проводом (6мм2). Провод вставляем в колпачки и заливаем эпоксидкой. Колпачки фиксируем на кнопках обычными кембриками или термоусадкой подходящего диаметра.

Корпус в сборе:

5.2 Зажимы и переходники

Зажим „Кельвина”

Для изготовления зажимов потребуется 4-е обычных „крокодила” (не выбирайте самые мелкие, возьмите размером чуть больше), используются те половинки, на которые крепится шнур. Измеряем длину и ширину зоны зубьев, чтоб получить размеры изоляционной платки. Примерно получается 12х4мм (здесь и далее размеры даны только для ориентировки). Платка должна выступать по ширине примерно на 0.8мм с обеих сторон и по длине около 2мм. Примерный размер платки получился 5.5х15мм. Надо использовать двухсторонний стеклотекстолит толщиной 0.9-1.1мм. Более толстый ставить не стоит, т.к. придется больше спиливать губки „крокодилов” и

прочность конструкции уменьшится. Для начала надо вырезать полоску текстолита длиной 70- 80мм и шириной 5.5мм. Ее нужно почистить и залудить с обеих сторон. Потом эту полоску разрезать на 4-е части. Неплохо все кусочки вместе зажать в тиски и подогнать под размер. Далее берем лепестки от телефонного реле (или другого типа, просто толщина должна быть ~0.15-0.2мм, ширина ~3.5мм и длина 22мм). Делаем передний профиль лепестков (для зажима SMD детали). Задний (треугольный) профиль лучше сделать после пайки пластины на платку. Обрабатываем наждачной бумагой и залуживаем нижнюю и боковые поверхности лепестков.

Потом размещаем подготовленные лепестки на платки и фиксируем их с помощью крокодилов. Пропаиваем сначала одну торцевую поверхность, поворачиваем крокодилы и пропаиваем вторую сторону. Потом уже можно спилить под углом заднюю часть лепестков.

Разбираем крокодилы с помощью плоскогубцев – аккуратно сжимаем по кругу края расклепанного штифта. Удаляем пружину и собираем два новых крокодила из длинных половинок, временно поставив штифт обратно на месте. Теперь надо спилить зубья обоих частей будущего зажима так, чтобы две платочки с припаянными на них лепестками точно входили в пространство между губками и плотно прилегали одна к другой.

Подготавливаем экранированный шнур длиной 0.75-1м. Как уже говорилось, можно использовать толстый кабель от старых VGA CRT мониторов, внутри есть три экранированных шнура, диаметром 3мм. Центральную жилу освобождаем от оплетки ~20мм. Экран укорачиваем до 10мм. Облуживаем оплетку на 5мм, центральную жилу на 2мм и припаиваем ее на лепесток с нижней стороны. Зачищаем наждачной бумагой передний край крокодилов и облуживаем его. Заодно чистим и внутреннюю поверхность крокодила (там, где нужно припаять экран шнура) и облуживаем. Подготовив т.о. обе половины „крокодила Кельвина”, собираем его. Это не так просто, для облегчения можно предварительно сжать пружину тисками и обмотать ее парой витков медной 0.5 проволоки, которую после сборки удалить. Будьте осторожны и работайте в защитных очках, пружина – вещь коварная! Когда половинки встанут на место, вставляем штифт. Подгоняем платки, чтобы встали посередине крокодилов и выступали ~2мм вперед. Припаиваем

обе половины крокодила к верхней поверхности платочек. Прижимаем шнур и расклепываем

штифт.

„Крокодил Кельвина”:

И полностью в сборе:

Пинцет для SMD

Пинцет сделан из двухстороннего фольгированного стеклотекстолита 1.5мм. Разводка рисунка есть в RLC2.lay. Вторая сторона - сплошной экран. Сверлим два переходных отверстия сверлом 0.5-0.8мм. Вставляем в отверстия медный провод такого же диаметра, обрезаем его с обеих сторон на высоте 0.5-0.8мм от поверхности платы, расклепываем и пропаиваем. Для пинцета использовали такие же лепестки от реле, как и в „крокодиле Кельвина”. Собираем пинцет, вставив между половинками прокладку из пластика (ПВХ) толщиной 6мм. После проверки облагораживаем термоусадкой.

Платки перед сборкой:

Пинцет в собранном виде:

Переходник для выводных деталей:

Для изготовления переходника использован разъем, от которого отпиливаем кусок (~16мм) на 6 пар выводов. Платка („Adapter” из RLC2.lay) сделана из двухстороннего стеклотекстолита толщиной 1.5мм. В переходные отверстия вставляем провод 0.7-0.8мм и расклепываем с обеих сторон. Экран сделан из луженой жести толщиной 0.15-0.2мм. Для корпуса использован старый компьютерный разъем RS232.

Материалы В сборе

6. Функции кнопок

Перед описанием процесса настройки прибора расскажем о назначении кнопок. Каждая кнопка в приборе имеет несколько функций в зависимости от режима работы и времени нажатия. Различаются длинные и короткие нажатия. Короткое – это когда время нажатия кнопки менее 1 сек., сопровождается одиночным звуковым сигналом. Если кнопка нажата и удерживается более 1 сек. – это состояние обрабатывается программой как „длинное нажатие” и сопровождается вторым звуковым сигналом. Длинные нажатия в предназначены для переключения режимов работы прибора.

Режим измерения – основной режим работы прибора, включается автоматически после подачи питания.

S1 – меняет частоту тестового сигнала (100Гц, 1кГц, 10кГц) по кругу

S2 – последовательная (s) / параллельная (p) схема замещения

S3 – режим отображения результатов LC / X (вторая строка дисплея)

S4 – отображение R / Q / D (первая строка)

S5 – диапазон измерения Auto – на дисплей рядом с номером диапазона выводится символ «А», после нажатия диапазоны перебираются по кругу от текущего до 7, далее 0..7. Обратное включение автоматического выбора диапазона – длинное нажатие S5

S6 – Удержание показаний (Hold), на экране отображается символ «Н»

Режим отладки (Service mode), включается длинным нажатием S6

S1 – меняет частоту сигнала тестового сигнала (100Гц, 1кГц, 10кГц) по кругу

S2 – переключает R range резистор в преобразователе I/U (100; 1к; 10к; 100к)

S3 – переключает к-т усиления (1х1; 10х1; 1х10 1х100)

S4 – измерение реальной (Re), мнимой (Im), обеих сразу (RI) составляющих напряжения или тока

S5 – режим измерения тока или напряжения

S6 – длинное нажатие – выход из режима отладки

Режим ХХ/КЗ калибровки, включается длинным нажатием S1

S1 – переключает типа калибровки (Open-Short-Open и т.д.)

S2 – запускает калибровку выбранного типа (Open или Short).

Короткое нажатие любой другой кнопки – выход в основной режим без калибровки.

Изменение корректирующих коэффициентов, включается длинным нажатием S3. Номер коэффициента соответствует номеру диапазона, т.е., к примеру, нулевой к-т используется для подстройки показаний на нулевом диапазоне. К-т №8 корректирует показания вольтметра напряжения смещения.

S1 - разряд влево

S2 - вниз (уменьшение значение разряда)

S3 - вверх (увеличение значение разряда)

S4 - разряд вправо

S5 - следующий коэффициент

S6 - выход из режима редактирования коэффициентов

- „Длинные” нажатия кнопок

S1 – включает режим калибровки

S2 – не задействовано

(т.е. потенциально нерабочие), либо сам монтаж сделан неаккуратно, с ошибками. Это приводит, как правило, к дополнительным повреждениям, и увеличению времени запуска и настройки устройства. Поэтому рекомендуем запускать RLC отдельно по блокам. И если есть возможность,

перед установкой на плату проверьте ВСЕ детали, которые сможете проверить. Это избавит вас от неразумений типа чтения надписей на перевернутых SMD-резисторах, установки высохших электролитов по питанию и т.п.

Сначала проверяем трансформатор и убеждаемся, что напряжения на вторичных обмотках ~8-9 В. Погоняйте его на холостом ходу, проверьте нагрев (железо трансформаторов от китайских БП за час разогревается до 60-70 градусов). Подключаем трансформатор и проверяем блок питания отдельно от остальной схемы, на выходе должно быть ±5В и +29.5-30.5В. Проверяем платку LCD на к.з. Подключаем только питание на плату дисплея. На первой строке должны появиться черные прямоугольники. Это свидетельствует о том, что нормально прошла внутренняя инициализация ЖКИ и правильно установлено напряжение, регулирующее контрастность.

Программировать МК можно практически любым программатором, поддерживающим PIC16F876A. МК можно программировать как отдельно – в программаторе, так и на плате через разъем ISCP. В этом случае перемычка Jmp1 должна быть разомкнута. Подключаем питание на основную плату без установленных каких-либо микросхем. Проверяем наличие напряжений +5В и -5В на месте соответствующих выводов МС. Убеждаемся, что на входах ОУ, где установлены защитные диоды, нет напряжения. Проверяем „опору” АЦП - +0.5В.

Устанавливаем МК, подключаем плату дисплея и включаем питание -> на дисплее должно появиться приветствие „RLC meter v1.0”. Пока не установлен АЦП, прибор не будет показывать другую информацию, и не будет реагировать на нажатие кнопок. Это свидетельствует о правильно прошитом МК. Проверяем наличие меандра 250кГц „AdcClk” и меандр „SinClk” – 100кГц (в режиме синуса=1кГц). Последовательно устанавливаем МС (не забывая при установке выключить питание!) и проверяем согласно таблице: 3

MAX293 на C19 относительно земли синусоидальный сигнал 1кГц размахом 0.6В 4 DA3 (TL081) на выводе „I” разъема подключения Zx синус 1кГц размахом 0.6В 5 DA4 Вывод 1 DA4 - синус 1кГц размахом 3В; Ку=5 ИОУ 6 микросхему DA9 из панельки, перемычкой заземляем вывод 9 (In–) АЦП. Соединяем второй вход (10; In+) с выводом 2 (Ref) АЦП, т.о. на вход АЦП подаем опорное напряжение. Включаем прибор и длинным нажатием на S4 переводим его на отображение показаний АЦП. На дисплее должно быть четыре числа 9999.
Диапазон R
0 1 Ом
1 10 Ом
2 200 Ом
3
4 20к
5 200к
6
7 10М

И в заключение приведем результаты измерений конденсатора 0.2пФ и дросселя 1мкГн на частоте 10кГц, показания стабильны:

Этот прибор измерительной лаборатории с достаточной для радиолюбительской практики точностью позволяет измерять: сопротивление резисторов-от 10 Ом до 10 МОм, емкость конденсаторов - от 10 пФ до 10 мкФ, индуктивность катушек и дросселей- от 10 ..20 мкГн до 8… 10 мГн. Метод измерения - мостовой. Индикация балансировки измерйтельного моста - звуковая с помощью головных телефонов. Точность измерений во многом зависит от тщательности подбора образцовых деталей и градуировки шкалы.

Принципиальная схема прибора изображена на рис. 53. Измеритель состоит из простейшего реохордного измерительного^ моста, генератора электрических колебаний звуковой частоты и усилителя тока. Питается прибор постоянным ♦напряжением 9 В, снимаемым с нерегулируемого выхода блока питания лаборатории. Прибор можно питать и от автономного источника, например батареи «Крона», аккумуляторной батареи 7Д-0,115 или двух соединенных последовательно батарей 3336J1. Прибор сохраняет работоспособность при снижении напряжения питания до 3… 4,5 В, однако громкость сигнала в телефонах, особенно при измерении небольших емкостей, в этом случае заметно падает.

Генератор, питающий измерительный мост, представляет собой симметричный мультивибратор на транзисторах VT1 и VT2. Конденсаторы С1 и С2 создают между коллекторными и базовыми цепями транзисторов положительную -обратную связь по переменному току, благодаря чему мультивибратор самовозбуждается и генерирует электрические колебания, близкие по форме к прямоугольным. Резисторы и конденсаторы мультивибратора подобраны таким образом, что он генерирует колебания частотой около 1000 Гц. Напряжение такой частоты воспроизводится телефонами (или динамической головкой) примерно как звук «си» второй октавы.

Рис. 53. Принципиальная схема измерителя RCL

Электрические ’колебания мультивибратора усиливаются усилителем на транзисторе VT3 и с его нагрузочного резистора R5 поступают в диагональ питания измерительного моста. Переменный резистор R5 выполняет функции реохорда. Плечо сравнения образуют образцовые резисторы R6-R8, конденсаторы СЗ-С5 и катушки индуктивности L1 и L2, поочередно включаемые з мост переключателем SA1. Измеряемый резистор R x или катушку индуктивности L x подсоединяют к зажимам ХТ1, ХТ2, а конденсатор С х - к зажимам ХТ2, ХТЗ. Головные телефоны BF1 включают в измерительную диагональ моста через гнезда XS1 и XS2 При любом виде измерений мост балансируют реохордом R5, добиваясь полного пропадания или наименьшей громкости звука в телефонах. Сопротивление R XJ емкость С х или индуктивность L x отсчитывают по шкале реохорда в относительных единицах.

Множители возле переключателя вида и пределов измерений SA1 показывают, на сколько ом, микрогенри. или ликофарад надо умножить отсчитанное по шкале показание, чтобы определить измеряемое сопротивление резистора, емкость конденсатора или индуктивность катушки. Так, например, если при балансе моста считанное со шкалы реохорда показание равно 0,5, а переключатель SA1 находится в положении «ХЮ 4 пФ», то емкость измеряемого конденсатора С х равна 5000 пФ (0,005 мкФ).

Резистор R6 ограничивает коллекторный τόκ транзистора VT3, возрастающий при измерении индуктивности, и тем самым предотвращает возможный тепловой пробой транзистора.

Конструкция и детали. Внешний вид и конструкция прибора показаны на рис. 54. Большая часть деталей размещена на монтажной плате из гетинакса, закрепленной в корпусе на П-образных кронштейнах высотой 35 мм. Под монтажной платой можно установить батарею автономного питания прибора. Переключатель SA1, выключатель питания Q1 и колодка с гнездами XS1, XS2 для подключения головных телефонов закреплены непосредственно на передней стенке корпуса.

Разметка отверстий в передней стенке корпуса показана на рис. 55. Прямоугольное отверстие размерами 30X15 мм в нижней части стенки, предназначено для выступающих вперед зажимов ХТ1-ХТЗ. Такое же отверстие в правой части стенки является «окном» шкалы, круглое отверстие под ним предназначено для валика переменного резистора R5. Отверстие диаметром 12,5 мм предназначено для выключателя питания, функции которого выполняет тумблер ТВ2-1, отверстие диаметром 10,5 мм - для галетного переключателя SA1 на 11 положений (используется только восемь) и одно направление. Пять отверстий диаметром 3,2 мм с зенковкой служат для винтов крепления гнездовой колодки, полочки с зажимами ХТ1-ХТЗ и кронштейна резистора R5, четыре отверстия диаметром 2,2 мм (также с зенковкой) - для заклепок крепления уголков, к которым привинчивают крышку.

Надписи, поясняющие назначение ручек управления, зажимов и гнезд, выполнены на плотной бумаге, которая затем накрывается пластиной из прозрачного органического стекла толщиной 2 мм. Для крепления этой накладки к корпусу использованы гайки выключателя питания Q1, переключателя SA1 и

Рис. 54. Внешний вид и конструкция измерителя RCL

три винта М2Х4, ввинченные в резьбовые отверстия в накладке с внутренней стороны корпуса.

Конструкция зажимов для подключения к прибору резисторов, конденсаторов и катушек индуктивности, параметры которых надо измерить, показана на рис. 56. Каждый зажим состоит из деталей 2 и 3, закрепленных на гетинахсовой плате 1 заклепками 4 Соединительные провода припаивают к монтажным лепесткам 5. Детали зажимов изготавливают из твердой латуни или бронзы толщиной 0,4… 0,5 мм. При работе с прибором нажимают на верхнюю часть детали 2 до совмещения отверстия в ней с отверстиями в нижней части этой же детали и детали 3 и вставляют в них вывод измеряемой детали. Необхо

Рис. 55. Разметка передней стенки корпуса

Рис. 56. Устройство колодки с зажимами для подсоединения выводов радиодеталей:

1-плата; 2, 3 - пружинящие контакты; 4 -заклепки; 5 - монтажный лепесток; 6 - -уголок

Рис. 57. Устройство шкального механизма:

лей желательно проверить на измерительном приборе заводского изготовления.

Образцовая катушка L1, индуктивность которой должна быть равна 100 мкГн, содержит 96 витков провода ПЭВ-1 0,2, намотанного виток к витку на цилиндрическом каркасе внешним диаметром 17,5 мм, или 80 витков такого же провода, намотанного на каркасе диаметром 20 мм. В качестве каркаса можно использовать картонные гильзы патронов для охотничьих ружей 20или 12-го калибра. Каркас катушки насажен на кружок, выпиленный из гетинакса и приклеенный к монтажной плате клеем БФ-2.

Индуктивность образцовой катушки L2 в десять раз больше (1 мГн). Она содержит 210 витков провода ПЭВ-1 0,12, намотанного на унифицированном трехсекционном полистироловом каркасе, и помещена в карбонильный броневой магнитопровод СБ-12а. Ее индуктивность подгоняют подстроечником, входящим в комплект магнитопровода. Последний приклеен к монтажной плате клеем БФ-2.

Индуктивность обеих катушек желательно подогнать до установки в измеритель. Лучше всего это сделать с помощью прибора заводского изготовления. Следует отметить, что если первую катушку изготовить точно по описанию, та она будет иметь близкую к необходимой индуктивность и по ней в собранном измерителе можно будет подогнать индуктивность второй катушки.

Налаживание прибора, градуировка шкалы. Если в измерителе использованы предварительно проверенные и отобранные транзисторы, резисторы и конденсаторы, мультивибратор и усилитель должны нормально работать без какого-либо налаживания. В этом нетрудно убедиться, соединив проволочной перемычкой зажимы ХТ1 и ХТ2 или ХТ2 и ХТЗ. В телефонах должен появиться звук, громкость которого изменяется при перемещении движка реохорда из одного крайнего положения в другое. Если звука нет, значит, допущена ошибка в монтаже мультивибратора или неправильно подключен источник питания.

Желательную высоту (тон) звука в телефонах можно подобрать изменением емкости конденсатора С1 или С2. С уменьшением их емкости высота звука повышается, а с увеличением - понижается.

Рис. 59. Шкала измерителя RCL

Поскольку шкала прибора общая для всех видов и пределов измерений, ее можно отградуировать на одном из пределов’ с помощью магазина сопротивлений. Допустим, что шкала прибора градуируется на поддиапазоне, соответствующем образцовому резистору R8 (10 кОм). Переключатель SA1 в этом случае устанавливают в положение «ХЮ 4 Ом», а к зажимам ХТ1 и ХТ2 подключают резистор сопротивлением 10 кОм. После этого мост балансируют, добиваясь пропадания звука в телефонах, и на шкале реохорда напротив стрелки делают исходную риску с отметкой 1. Она будет соответствовать сопротивлению 10 4 Ом, т. е. 10 кОм. Далее к прибору поочередно подключают резисторы сопротивлением 9, 8, 7 кОм и т. д. и делают на шкале отметки, соответствующие долям единицы. В дальнейшем отметка 0,9 на шкале реохорда при измерении сопротивлений этого поддиапазона будет соответствовать сопротивлению 9 кОм (0,9-10 4 Ом = 9000 Ом=9 кОм), отметка 0,8 - сопротивлению 8 кОм (0,8· 10 4 0м = 8000 Ом=8 кОм) и т. д. Далее к прибору подключают резисторы сопротивлением 15, 20, 25 кОм и т. д. и на шкале реохорда делают соответствующие отметки (1,5; 2; 2,5 и т. д). В результате получится шкала, образец которой показан на рис. 59.

Отградуировть шкалу можно также с помощью набора резисторов с допускаемым отклонением от номиналов не более ±5%. Соединяя резисторы параллельно или последовательно, можно получать практически любые значения «образцовых» резисторов.

Отградуированная таким способом шкала пригодна для других видов и пределов измерений только в том случае, если соответствующие им образцовые резисторы, конденсаторы и катушки индуктивности будут иметь параметры, указанные на принципиальной схеме прибора.

Пользуясь прибором, надо помнить, что при измерении емкости оксидных конденсаторов (вывод их положительной обкладки подключают к зажиму ХТЗ) баланс моста ощущается не так четко, как при измерении сопротивлений, поэтому и точность измерений в этом случае меньше. Объясняется такое явление утечкой тока, свойственной оксидным конденсаторам.