Оценка характеристик того или иного зарядного устройства затруднительна без понимания того, как собственно должен протекать образцовый заряд li-ion аккумулятора. Поэтому прежде чем перейти непосредственно к схемам, давайте немного вспомним теорию.

Какими бывают литиевые аккумуляторы

В зависимости от того, из какого материала изготовлен положительный электрод литиевого аккумулятора, существует их несколько разновидностей:

  • с катодом из кобальтата лития;
  • с катодом на основе литированного фосфата железа;
  • на основе никель-кобальт-алюминия;
  • на основе никель-кобальт-марганца.

У всех этих аккумуляторов имеются свои особенности, но так как для широкого потребителя эти нюансы не имеют принципиального значения, в этой статье они рассматриваться не будут.

Также все li-ion аккумуляторы производят в различных типоразмерах и форм-факторах. Они могут быть как в корпусном исполнении (например, популярные сегодня 18650) так и в ламинированном или призматическом исполнении (гель-полимерные аккумуляторы). Последние представляют собой герметично запаянные пакеты из особой пленки, в которых находятся электроды и электродная масса.

Наиболее распространенные типоразмеры li-ion аккумуляторов приведены в таблице ниже (все они имеют номинальное напряжение 3.7 вольта):

Обозначение Типоразмер Схожий типоразмер
XXYY0 ,
где XX - указание диаметра в мм,
YY - значение длины в мм,
0 - отражает исполнение в виде цилиндра
10180 2/5 AAA
10220 1/2 AAA (Ø соответствует ААА, но на половину длины)
10280
10430 ААА
10440 ААА
14250 1/2 AA
14270 Ø АА, длина CR2
14430 Ø 14 мм (как у АА), но длина меньше
14500 АА
14670
15266, 15270 CR2
16340 CR123
17500 150S/300S
17670 2xCR123 (или 168S/600S)
18350
18490
18500 2xCR123 (или 150A/300P)
18650 2xCR123 (или 168A/600P)
18700
22650
25500
26500 С
26650
32650
33600 D
42120

Внутренние электрохимические процессы протекают одинаково и не зависят от форм-фактора и исполнения АКБ, поэтому все, сказанное ниже, в равной степени относится ко всем литиевым аккумуляторам.

Как правильно заряжать литий-ионные аккумуляторы

Наиболее правильным способом заряда литиевых аккумуляторов является заряд в два этапа. Именно этот способ использует компания Sony во всех своих зарядниках. Несмотря на более сложный контроллер заряда, это обеспечивает более полный заряд li-ion аккумуляторов, не снижая срока их службы.

Здесь речь идет о двухэтапном профиле заряда литиевых аккумуляторов, сокращенно именуемым CC/CV (constant current, constant voltage). Есть еще варианты с ипульсным и ступенчатым токами, но в данной статье они не рассматриваются. Подробнее про зарядку импульсным током можно прочитать .

Итак, рассмотрим оба этапа заряда подробнее.

1. На первом этапе должен обеспечиваться постоянный ток заряда. Величина тока составляет 0.2-0.5С. Для ускоренного заряда допускается увеличение тока до 0.5-1.0С (где С - это емкость аккумулятора).

Например, для аккумулятора емкостью 3000 мА/ч, номинальный ток заряда на первом этапе равен 600-1500 мА, а ток ускоренного заряда может лежать в пределах 1.5-3А.

Для обеспечения постоянного зарядного тока заданной величины, схема зарядного устройства (ЗУ) должна уметь поднимать напряжение на клеммах аккумулятора. По сути, на первом этапе ЗУ работает как классический стабилизатор тока.

Важно: если планируется заряд аккумуляторов со встроенной платой защиты (PCB), то при конструировании схемы ЗУ необходимо убедиться, что напряжение холостого хода схемы никогда не сможет превысить 6-7 вольт. В противном случае плата защиты может выйти из строя.

В момент, когда напряжение на аккумуляторе поднимется до значения 4.2 вольта, аккумулятор наберет приблизительно 70-80% своей емкости (конкретное значение емкости будет зависит от тока заряда: при ускоренном заряде будет чуть меньше, при номинальном - чуть больше). Этот момент является окончанием первого этапа заряда и служит сигналом для перехода ко второму (и последнему) этапу.

2. Второй этап заряда - это заряд аккумулятора постоянным напряжением, но постепенно снижающимся (падающим) током.

На этом этапе ЗУ поддерживает на аккумуляторе напряжение 4.15-4.25 вольта и контролирует значение тока.

По мере набора емкости, зарядный ток будет снижаться. Как только его значение уменьшится до 0.05-0.01С, процесс заряда считается оконченным.

Важным нюансом работы правильного зарядного устройства является его полное отключение от аккумулятора после окончания зарядки. Это связано с тем, что для литиевых аккумуляторов является крайне нежелательным их длительное нахождение под повышенным напряжением, которое обычно обеспечивает ЗУ (т.е. 4.18-4.24 вольта). Это приводит к ускоренной деградации химического состава аккумулятора и, как следствие снижению его емкости. Под длительным нахождением подразумевается десятки часов и более.

За время второго этапа заряда, аккумулятор успевает набрать еще примерно 0.1-0.15 своей емкости. Общий заряд аккумулятора таким образом достигает 90-95%, что является отличным показателем.

Мы рассмотрели два основных этапа заряда. Однако, освещение вопроса зарядки литиевых аккумуляторов было бы неполным, если бы не был упомянут еще один этап заряда - т.н. предзаряд.

Предварительный этап заряда (предзаряд) - этот этап используется только для глубоко разряженных аккумуляторов (ниже 2.5 В) для вывода их на нормальный эксплуатационный режим.

На этом этапе заряд обеспечивается постоянным током пониженной величины до тех пор, пока напряжение на аккумуляторе не достигнет значения 2.8 В.

Предварительный этап необходим для предотвращения вспучивания и разгерметизации (или даже взрыва с возгоранием) поврежденных аккумуляторов, имеющих, например, внутреннее короткое замыкание между электродами. Если через такой аккумулятор сразу пропустить большой ток заряда, это неминуемо приведет к его разогреву, а дальше как повезет.

Еще одна польза предзаряда - это предварительный прогрев аккумулятора, что актуально при заряде при низких температурах окружающей среды (в неотапливаемом помещении в холодное время года).

Интеллектуальная зарядка должна уметь контролировать напряжение на аккумуляторе во время предварительного этапа заряда и, в случае, если напряжение долгое время не поднимается, делать вывод о неисправности аккумулятора.

Все этапы заряда литий-ионного аккумулятора (включая этап предзаряда) схематично изображены на этом графике:

Превышение номинального зарядного напряжения на 0,15В может сократить срок службы аккумулятора вдвое. Понижение напряжения заряда на 0,1 вольт уменьшает емкость заряженной батареи примерно на 10%, но значительно продляет срок ее службы. Напряжение полностью заряженного аккумулятора после извлечения его из зарядного устройства составляет 4.1-4.15 вольта.

Резюмирую вышесказанное, обозначим основные тезисы:

1. Каким током заряжать li-ion аккумулятор (например, 18650 или любой другой)?

Ток будет зависеть от того, насколько быстро вы хотели бы его зарядить и может лежать в пределах от 0.2С до 1С.

Например, для аккумулятора типоразмера 18650 емкостью 3400 мА/ч, минимальный ток заряда составляет 680 мА, а максимальный - 3400 мА.

2. Сколько времени нужно заряжать, например, те же аккумуляторные батарейки 18650?

Время заряда напрямую зависит от тока заряда и рассчитывается по формуле:

T = С / I зар.

Например, время заряда нашего аккумулятора емкостью 3400 мА/ч током в 1А составит около 3.5 часов.

3. Как правильно зарядить литий-полимерный аккумулятор?

Любые литиевые аккумуляторы заряжаются одинаково. Не важно, литий-полимерный он или литий-ионный. Для нас, потребителей, никакой разницы нет.

Что такое плата защиты?

Плата защиты (или PCB - power control board) предназначена для защиты от короткого замыкания, перезаряда и переразряда литиевой батареи. Как правило в модули защиты также встроена и защита от перегрева.

В целях соблюдения техники безопасности запрещено использование литиевых аккумуляторов в бытовых приборах, если в них не встроена плата защиты. Поэтому во всех аккумуляторах от сотовых телефонов всегда есть PCB-плата. Выходные клеммы АКБ размещены прямо на плате:

В этих платах используется шестиногий контроллер заряда на специализированной микрухе (JW01, JW11, K091, G2J, G3J, S8210, S8261, NE57600 и пр. аналоги). Задачей этого контроллера является отключение батареи от нагрузки при полном разряде батареи и отключение аккумулятора от зарядки при достижении 4,25В.

Вот, например, схема платы защиты от аккумулятора BP-6M, которыми снабжались старые нокиевские телефоны:

Если говорить об 18650, то они могут выпускаться как с платой защиты так и без нее. Модуль защиты располагается в районе минусовой клеммы аккумулятора.

Плата увеличивает длину аккумулятора на 2-3 мм.

Аккумуляторы без PCB-модуля обычно входят в состав батарей, комплектуемых собственными схемами защиты.

Любой аккумулятор с защитой легко превращается в аккумулятор без защиты, достаточно просто распотрошить его.

На сегодняшний день максимальная емкость аккумулятора 18650 составляет 3400 мА/ч. Аккумуляторы с защитой обязательно имеют соответствующее обозначение на корпусе ("Protected").

Не стоит путать PCB-плату с PCM-модулем (PCM - power charge module). Если первые служат только целям защиты аккумулятора, то вторые предназначены для управления процессом заряда - ограничивают ток заряда на заданном уровне, контролируют температуру и, вообще, обеспечивают весь процесс. PCM-плата - это и есть то, что мы называем контроллером заряда.

Надеюсь, теперь не осталось вопросов, как зарядить аккумулятор 18650 или любой другой литиевый? Тогда переходим к небольшой подборке готовых схемотехнических решений зарядных устройств (тех самых контроллеров заряда).

Схемы зарядок li-ion аккумуляторов

Все схемы подходят для зарядки любого литиевого аккумулятора, остается только определиться с зарядным током и элементной базой.

LM317

Схема простого зарядного устройства на основе микросхемы LM317 с индикатором заряда:

Схема простейшая, вся настройка сводится к установке выходного напряжения 4.2 вольта с помощью подстроечного резистора R8 (без подключенного аккумулятора!) и установке тока заряда путем подбора резисторов R4, R6. Мощность резистора R1 - не менее 1 Ватт.

Как только погаснет светодиод, процесс заряда можно считать оконченным (зарядный ток до нуля никогда не уменьшится). Не рекомендуется долго держать аккумулятор в этой зарядке после того, как он полностью зарядится.

Микросхема lm317 широко применяется в различных стабилизаторах напряжения и тока (в зависимости от схемы включения). Продается на каждом углу и стоит вообще копейки (можно взять 10 шт. всего за 55 рублей).

LM317 бывает в разных корпусах:

Назначение выводов (цоколевка):

Аналогами микросхемы LM317 являются: GL317, SG31, SG317, UC317T, ECG1900, LM31MDT, SP900, КР142ЕН12, КР1157ЕН1 (последние два - отечественного производства).

Зарядный ток можно увеличить до 3А, если вместо LM317 взять LM350. Она, правда, подороже будет - 11 руб/шт .

Печатная плата и схема в сборе приведены ниже:

Старый советский транзистор КТ361 можно заменить на аналогичный p-n-p транзистор (например, КТ3107, КТ3108 или буржуйские 2N5086, 2SA733, BC308A). Его можно вообще убрать, если индикатор заряда не нужен.

Недостаток схемы: напряжение питания должно быть в пределах 8-12В. Это связано с тем, что для нормальной работы микросхемы LM317 разница между напряжением на аккумуляторе и напряжением питания должна быть не менее 4.25 Вольт. Таким образом, от USB-порта запитать не получится.

MAX1555 или MAX1551

MAX1551/MAX1555 - специализированные зарядные устройства для Li+ аккумуляторов, способные работать от USB или от отдельного адаптера питания (например, зарядника от телефона).

Единственное отличие этих микросхем - МАХ1555 выдает сигнал для индикатора процесса заряда, а МАХ1551 - сигнал того, что питание включено. Т.е. 1555 в большинстве случаев все-таки предпочтительнее, поэтому 1551 сейчас уже трудно найти в продаже.

Подробное описание этих микросхем от производителя - .

Максимальное входное напряжение от DC-адаптера - 7 В, при питании от USB - 6 В. При снижении напряжения питания до 3.52 В, микросхема отключается и заряд прекращается.

Микросхема сама детектирует на каком входе присутствует напряжение питания и подключается к нему. Если питание идет по ЮСБ-шине, то максимальный ток заряда ограничивается 100 мА - это позволяет втыкать зарядник в USB-порт любого компьютера, не опасаясь сжечь южный мост.

При питании от отдельного блока питания, типовое значение зарядного тока составляет 280 мА.

В микросхемы встроена защита от перегрева. Но даже в этом случае схема продолжает работать, уменьшая ток заряда на 17 мА на каждый градус выше 110°C.

Имеется функция предварительного заряда (см. выше): до тех пор пока напряжение на аккумуляторе находится ниже 3В, микросхема ограничивает ток заряда на уровне 40 мА.

Микросхема имеет 5 выводов. Вот типовая схема включения:

Если есть гарантия, что на выходе вашего адаптера напряжение ни при каких обстоятельствах не сможет превысить 7 вольт, то можно обойтись без стабилизатора 7805.

Вариант зарядки от USB можно собрать, например, на такой .

Микросхемы не нуждается ни во внешних диодах, ни во внешних транзисторах. Вообще, конечно, шикарные микрухи! Только они маленькие слишком, паять неудобно. И еще стоят дорого ().

LP2951

Стабилизатор LP2951 производится фирмой National Semiconductors (). Он обеспечивает реализацию встроенной функции ограничения тока и позволяет формировать на выходе схемы стабильный уровень напряжения заряда литий-ионного аккумулятора.

Величина напряжения заряда составляет 4,08 - 4,26 вольта и выставляется резистором R3 при отключенном аккумуляторе. Напряжение держится очень точно.

Ток заряда составляет 150 - 300мА, это значение ограничено внутренними цепями микросхемы LP2951 (зависит от производителя).

Диод применять с небольшим обратным током. Например, он может быть любым из серии 1N400X, какой удастся приобрести. Диод используется, как блокировочный, для предотвращения обратного тока от аккумулятора в микросхему LP2951 при отключении входного напряжения.

Данная зарядка выдает довольно низкий зарядный ток, так что какой-нибудь аккумулятор 18650 может заряжаться всю ночь.

Микросхему можно купить как в DIP-корпусе , так и в корпусе SOIC (стоимость около 10 рублей за штучку).

MCP73831

Микросхема позволяет создавать правильные зарядные устройства, к тому же она дешевле, чем раскрученная MAX1555.

Типовая схема включения взята из :

Важным достоинством схемы является отсутствие низкоомных мощных резисторов, ограничивающих ток заряда. Здесь ток задается резистором, подключенным к 5-ому выводу микросхемы. Его сопротивление должно лежать в диапазоне 2-10 кОм.

Зарядка в сборе выглядит так:

Микросхема в процессе работы неплохо так нагревается, но это ей вроде не мешает. Свою функцию выполняет.

Вот еще один вариант печатной платы с smd светодиодом и разъемом микро-USB:

LTC4054 (STC4054)

Очень простая схема, отличный вариант! Позволяет заряжать током до 800 мА (см. ). Правда, она имеет свойство сильно нагреваться, но в этом случае встроенная защита от перегрева снижает ток.

Схему можно существенно упростить, выкинув один или даже оба светодиодов с транзистором. Тогда она будет выглядеть вот так (согласитесь, проще некуда: пара резисторов и один кондер):

Один из вариантов печатной платы доступен по . Плата рассчитана под элементы типоразмера 0805.

I=1000/R . Сразу большой ток выставлять не стоит, сначала посмотрите, насколько сильно будет греться микросхема. Я для своих целей взял резистор на 2.7 кОм, при этом ток заряда получился около 360 мА.

Радиатор к этой микросхеме вряд ли получится приспособить, да и не факт, что он будет эффективен из-за высокого теплового сопротивления перехода кристалл-корпус. Производитель рекомендует делать теплоотвод "через выводы" - делать как можно более толстые дорожки и оставлять фольгу под корпусом микросхемы. И вообще, чем больше будет оставлено "земляной" фольги, тем лучше.

Кстати говоря, бОльшая часть тепла отводится через 3-ю ногу, так что можно сделать эту дорожку очень широкой и толстой (залить ее избыточным количеством припоя).

Корпус микросхемы LTC4054 может иметь маркировку LTH7 или LTADY.

LTH7 от LTADY отличаются тем, что первая может поднять сильно севший аккумулятор (на котором напряжение меньше 2.9 вольт), а вторая - нет (нужно отдельно раскачивать).

Микросхема вышла очень удачной, поэтому имеет кучу аналогов: STC4054, MCP73831, TB4054, QX4054, TP4054, SGM4054, ACE4054, LP4054, U4054, BL4054, WPM4054, IT4504, Y1880, PT6102, PT6181, VS6102, HX6001, LC6000, LN5060, CX9058, EC49016, CYT5026, Q7051. Прежде, чем использовать какой-либо из аналогов, сверяйтесь по даташитам.

TP4056

Микросхема выполнена в корпусе SOP-8 (см. ), имеет на брюхе металлический теплосьемник не соединенный с контактами, что позволяет эффективнее отводить тепло. Позволяет заряжать аккумулятор током до 1А (ток зависит от токозадающего резистора).

Схема подключения требует самый минимум навесных элементов:

Схема реализует классический процесс заряда - сначала заряд постоянным током, затем постоянным напряжением и падающим током. Все по-научному. Если разобрать зарядку по шагам, то можно выделить несколько этапов:

  1. Контроль напряжения подключенного аккумулятора (это происходит постоянно).
  2. Этап предзаряда (если аккумулятор разряжен ниже 2.9 В). Заряд током 1/10 от запрограммированного резистором R prog (100мА при R prog = 1.2 кОм) до уровня 2.9 В.
  3. Зарядка максимальным током постоянной величины (1000мА при R prog = 1.2 кОм);
  4. При достижении на батарее 4.2 В, напряжение на батарее фиксируется на этому уровне. Начинается плавное снижение зарядного тока.
  5. При достижении тока 1/10 от запрограммированного резистором R prog (100мА при R prog = 1.2кОм) зарядное устройство отключается.
  6. После окончания зарядки контроллер продолжает мониторинг напряжения аккумулятора (см. п.1). Ток, потребляемый схемой мониторинга 2-3 мкА. После падения напряжения до 4.0В, зарядка включается снова. И так по кругу.

Ток заряда (в амперах) рассчитывается по формуле I=1200/R prog . Допустимый максимум - 1000 мА.

Реальный тест зарядки с аккумулятором 18650 на 3400 мА/ч показан на графике:

Достоинство микросхемы в том, что ток заряда задается всего лишь одним резистором. Не требуются мощные низкоомные резисторы. Плюс имеется индикатор процесса заряда, а также индикация окончания зарядки. При неподключенном аккумуляторе, индикатор моргает с периодичностью раз в несколько секунд.

Напряжение питания схемы должно лежать в пределах 4.5...8 вольт. Чем ближе к 4.5В - тем лучше (так чип меньше греется).

Первая нога используется для подключения датчика температуры, встроенного в литий-ионную батарею (обычно это средний вывод аккумулятора сотового телефона). Если на выводе напряжение будет ниже 45% или выше 80% от напряжения питания, то зарядка приостанавливается. Если контроль температуры вам не нужен, просто посадите эту ногу на землю.

Внимание! У данной схемы есть один существенный недостаток: отсутствие схемы защиты от переполюсовки батареи. В этом случае контроллер гарантированно выгорает из строя из-за превышения максимального тока. При этом напряжение питания схемы напрямую попадает на аккумулятор, что очень опасно.

Печатка простая, делается за час на коленке. Если время терпит, можно заказать готовые модули. Некоторые производители готовых модулей добавляют защиту от перегрузки по току и переразряда ( , например, можно выбрать какая плата вам нужна - с защитой или без, и с каким разъемом).

Так же можно найти готовые платы с выведенным контактом под температурный датчик. Или даже модуль зарядки с несколькими запараллеленными микросхемами TP4056 для увеличения зарядного тока и с защитой от переполюсовки (пример).

LTC1734

Тоже очень простая схема. Ток заряда задается резистором R prog (например, если поставить резистор на 3 кОм, ток будет равен 500 мА).

Микросхемы обычно имеют маркировку на корпусе: LTRG (их можно часто встретить в старых телефонах от самсунгов).

Транзистор подойдет вообще любой p-n-p, главное, чтобы он был рассчитан на заданный ток зарядки.

Индикатора заряда на указанной схеме нет, но в на LTC1734 сказано, что вывод "4" (Prog) имеет две функции - установку тока и контроль окончания заряда батареи. Для примера приведена схема с контролем окончания заряда при помощи компаратора LT1716.

Компаратор LT1716 в данном случае можно заменить дешевым LM358.

TL431 + транзистор

Наверное, сложно придумать схему из более доступных компонентов. Здесь самое сложное - это найти источник опорного напряжение TL431. Но они настолько распространены, что встречаются практически повсюду (редко какой источник питания обходится без этой микросхемы).

Ну а транзистор TIP41 можно заменить любым другим с подходящим током коллектора. Подойдут даже старые советские КТ819, КТ805 (или менее мощные КТ815, КТ817).

Настройка схемы сводится к установке выходного напряжения (без аккумулятора!!!) с помощью подстроечного резистора на уровне 4.2 вольта. Резистор R1 задает максимальное значение зарядного тока.

Данная схема полноценно реализует двухэтапный процесс заряда литиевых аккумуляторов - сначала зарядка постоянным током, затем переход к фазе стабилизации напряжения и плавное снижение тока практически до нуля. Единственный недостаток - плохая повторяемость схемы (капризна в настройке и требовательна к используемым компонентам).

MCP73812

Есть еще одна незаслуженно обделенная вниманием микросхема от компании Microchip - MCP73812 (см. ). На ее базе получается очень бюджетный вариант зарядки (и недорогой!). Весь обвес - всего один резистор!

Кстати, микросхема выполнена в удобном для пайки корпусе - SOT23-5.

Единственный минус - сильно греется и нет индикации заряда. Еще она как-то не очень надежно работает, если у вас маломощный источник питания (который дает просадку напряжения).

В общем, если для вас индикация заряда не важна, и ток в 500 мА вас устраивает, то МСР73812 - очень неплохой вариант.

NCP1835

Предлагается полностью интегрированное решение - NCP1835B, обеспечивающее высокую стабильность зарядного напряжения (4.2 ±0.05 В).

Пожалуй, единственным недостатком данной микросхемы является ее слишком миниатюрный размер (корпус DFN-10, размер 3х3 мм). Не каждому под силу обеспечить качественную пайку таких миниатюрных элементов.

Из неоспоримых преимуществ хотелось бы отметить следующее:

  1. Минимальное количество деталей обвеса.
  2. Возможность зарядки полностью разряженной батареи (предзаряд током 30мА);
  3. Определение окончания зарядки.
  4. Программируемый зарядный ток - до 1000 мА.
  5. Индикация заряда и ошибок (способна детектировать незаряжаемые батарейки и сигнализировать об этом).
  6. Защита от продолжительного заряда (изменяя емкость конденсатора С т, можно задать максимальное время заряда от 6,6 до 784 минут).

Стоимость микросхемы не то чтобы копеечная, но и не настолько большая (~1$), чтобы отказаться от ее применения. Если вы дружите с паяльником, я бы порекомендовал остановить свой выбор на этом варианте.

Более подробное описание находится в .

Можно ли заряжать литий-ионный аккумулятор без контроллера?

Да, можно. Однако это потребует плотного контроля за зарядным током и напряжением.

Вообще, зарядить АКБ, к примеру, наш 18650 совсем без зарядного устройства не получится. Все равно нужно как-то ограничивать максимальный ток заряда, так что хотя бы самое примитивное ЗУ, но все же потребуется.

Самое простейшее зарядное устройство для любого литиевого аккумулятора - это резистор, включенный последовательно с аккумулятором:

Сопротивление и мощность рассеяния резистора зависят от напряжения источника питания, который будет использоваться для зарядки.

Давайте в качестве примера, рассчитаем резистор для блока питания напряжением 5 Вольт. Заряжать будем аккумулятор 18650, емкостью 2400 мА/ч.

Итак, в самом начале зарядки падение напряжение на резисторе будет составлять:

U r = 5 - 2.8 = 2.2 Вольта

Предположим, наш 5-вольтовый блок питания рассчитан на максимальный ток 1А. Самый большой ток схема будет потреблять в самом начале заряда, когда напряжение на аккумуляторе минимально и составляет 2.7-2.8 Вольта.

Внимание: в данных расчетах не учитывается вероятность того, что аккумулятор может быть очень глубоко разряжен и напряжение на нем может быть гораздо ниже, вплоть до нуля.

Таким образом, сопротивление резистора, необходимое для ограничения тока в самом начале заряда на уровне 1 Ампера, должно составлять:

R = U / I = 2.2 / 1 = 2.2 Ом

Мощность рассеивания резистора:

P r = I 2 R = 1*1*2.2 = 2.2 Вт

В самом конце заряда аккумулятора, когда напряжение на нем приблизится к 4.2 В, ток заряда будет составлять:

I зар = (U ип - 4.2) / R = (5 - 4.2) / 2.2 = 0.3 А

Т.е., как мы видим, все значения не выходят за рамки допустимых для данного аккумулятора: начальный ток не превышает максимально допустимый ток заряда для данного аккумулятора (2.4 А), а конечный ток превышает ток, при котором аккумулятор уже перестает набирать емкость (0.24 А).

Самый главный недостаток такой зарядки состоит в необходимости постоянно контролировать напряжение на аккумуляторе. И вручную отключить заряд, как только напряжение достигнет 4.2 Вольта. Дело в том, что литиевые аккумуляторы очень плохо переносят даже кратковременное перенапряжение - электродные массы начинают быстро деградировать, что неминуемо приводит к потери емкости. Одновременно с этим создаются все предпосылки для перегрева и разгерметизации.

Если в ваш аккумулятор встроена плата защиты, о которых речь шла чуть выше, то все упрощается. По достижении определенного напряжение на аккумуляторе, плата сама отключит его от зарядного устройства. Однако такой способ зарядки имеет существенные минусы, о которых мы рассказывали в .

Защита, встроенная в аккумулятор не позволит его перезарядить ни при каких обстоятельствах. Все, что вам остается сделать, это проконтролировать ток заряда, чтобы он не превысил допустимые значения для данного аккумулятора (платы защиты не умеют ограничивать ток заряда, к сожалению).

Зарядка при помощи лабораторного блока питания

Если в вашем распоряжении имеется блок питания с защитой (ограничением) по току, то вы спасены! Такой источник питания уже является полноценным зарядным устройством, реализующим правильный профиль заряда, о котором мы писали выше (СС/СV).

Все, что нужно сделать для зарядки li-ion - это выставить на блоке питания 4.2 вольта и установить желаемое ограничение по току. И можно подключать аккумулятор.

Вначале, когда аккумулятор еще разряжен, лабораторный блок питания будет работать в режиме защиты по току (т.е. будет стабилизировать выходной ток на заданном уровне). Затем, когда напряжение на банке поднимется до установленных 4.2В, блок питания перейдет в режим стабилизации напряжения, а ток при этом начнет падать.

Когда ток упадет до 0.05-0.1С, аккумулятор можно считать полностью заряженным.

Как видите, лабораторный БП - практически идеальное зарядное устройство! Единственное, что он не умеет делать автоматически, это принимать решение о полной зарядке аккумулятора и отключаться. Но это мелочь, на которую даже не стоит обращать внимания.

Как заряжать литиевые батарейки?

И если мы говорим об одноразовой батарейке, не предназначенной для перезарядки, то правильный (и единственно верный) ответ на этот вопрос - НИКАК.

Дело в том, что любая литиевая батарейка (например, распространенная CR2032 в виде плоской таблетки) характеризуется наличием внутреннего пассивирующего слоя, которым покрыт литиевый анод. Этот слой предотвращает химическую реакцию анода с электролитом. А подача стороннего тока разрушает вышеуказанный защитный слой, приводя к порче элемента питания.

Кстати, если говорить о незаряжаемой батарейке CR2032, то есть очень похожая на нее LIR2032 - это уже полноценный аккумулятор. Ее можно и нужно заряжать. Только у нее напряжение не 3, а 3.6В.

О том же, как заряжать литиевые аккумуляторы (будь то аккумулятор телефона, 18650 или любой другой li-ion аккумулятор) шла речь в начале статьи.

85 коп/шт. Купить MCP73812 65 руб/шт. Купить NCP1835 83 руб/шт. Купить *Все микросхемы с бесплатной доставкой

Цен указана за 2 штуки.

Понадобилось мне запитывать от литиевого АКБ 18650 одно устройство, которое работает от 3 - 4 вольт. Для воплощение этой идеи понадобилась схема которая умеет:
1 - защищать АКБ от переразряда
2 - заряжать литиевые АКБ
На Алиэкспрессе была найдена маленькая платка, которое всё это делала и стоила совсем не дорого.


Не долго думая сразу купил лот из двух таких плат за $3.88. Конечно, если купить их 10 штук, то можно найти и по 1 доллару. Но мне 10 штук не надо.
Спустя 2 недели платы были у меня в руках.
Кому интересно, то процесс распаковки и беглый обзор можно посмотреть тут:

Схема заряда выполнена на специализированном контроллере TP4056
Описание которого:
Со второй ноги на "землю" идёт сопротивление 1.2 кОм (на плате обозначено R3), меняя номинал этого сопротивления можно менять ток заряда аккумулятора.


Изначально стоит 1.2 кОм, значит ток заряда равен 1 Амперу.

К этой плате можно подключать и различные другие преобразователи. например, если подключить такой DC/DC преобразователь


То получим нечто вроде повербанка. Так как на выходе у нас будет +5в.
А если подключить универсальный, повышающий DC/DC преобразователь на LM2577S


То получим на выходе от 4 до 26 вольт. Что очень даже хорошо, и перекроет все наши потребности.
В общем, имея литиевый АКБ, даже от старого телефона и такую плату, мы получаем универсальный комплект для очень многих задач по питанию наших устройств.
Подробно можно посмотреть в видео-обзоре:


Планирую купить +138 Добавить в избранное Обзор понравился +56 +153

Всем радиолюбителям отлично знакомы платы заряда для одной банки li-ion аккумуляторов. Она пользуется большим спросом из за малой цены и неплохих выходных параметров.




Применяется для зарядки ранее указанных аккумуляторов от напряжения 5 Вольт. Подобные платки находят широкое применение в самодельных конструкциях с автономным источником питания в лице литий-ионных аккумуляторов.



Выпускают эти контроллеры в двух вариантах - с защитой и без. Те, что с защитой стоят чуток дорого.




Защита выполняет несколько функций

1) Отключает аккумулятор при глубоком разряде, перезаряде, перегрузке и к.з.





Сегодня мы очень детально проверим эту платку и поймем соответствуют ли обещанные производителем параметры реальным, а также устроим иные тесты, погнали.
Параметры платы приведены ниже




А это схемы, верхняя с защитой, нижняя - без




Под микроскопом заметно, что плата весьма неплохого качества. Двухсторонний стеклотекстолит, никаких "сополей", присутствует шелкография, все входы и выходы промаркированы, перепутать подключение не реально, если быть внимательным.




Микросхема может обеспечить максимальный ток заряда в районе 1 Ампера, этот ток можно изменить подбором резистора Rх (выделено красным).




А это табличка выходного тока в зависимости от сопротивления ранее указанного резистора.



Микросхема задает конечное напряжение зарядки (около 4,2Вольт) и ограничивает ток заряда. На плате имеется два светодиода, красный и синий (цвета могут быть иными) Первый горит в процессе заряда, второй когда аккумулятор полностью заряжен.




Имеется Micro USB разъем, куда подается напряжение 5 вольт.




Первый тест.
Проверим выходное напряжение, до которого будет заряжаться аккумулятор, оно должно быть в от 4,1 до 4,2В





Все верно, претензий нет.

Второй тест
Проверим выходной ток, на этих платах по умолчанию выставлен максимальный ток, а это около 1А.
Будем нагружать выход платы до тех пор, пока не сработает защита, этим имитируя большое потребление на входе или разряженный аккумулятор.




Максимальный ток близок к заявленному, идем дальше.

Тест 3
На место аккумулятора подключен лабораторный блок питания на котором заранее выставлено напряжение в районе 4-х вольт. Снижаем напряжение до тех пор пока защита не отключит аккумулятор, мультиметр отображает выходное напряжение.





Как видим, при 2,4-2,5 вольтах напряжение на выходе пропало, т.е защита свое отрабатывает. Но это напряжение ниже критического, думаю 2,8 Вольт было бы самое оно, в общем не советую разряжать аккумулятор до такой степени, чтобы сработала защита.

Тест 4
Проверка тока срабатывания защиты.
Для этих целей была использована электронная нагрузка, плавно увеличиваем ток.




Защита срабатывает на токах около 3,5 Ампер (отчетливо видно в ролике)

Из недостатков замечу только то, что микросхема безбожно нагревается и не спасает даже теплоемкая плата, к стати - сама микросхема имеет подложку для эффективной теплоотдачи и эта подложка припаяна к плате, последняя играет роль теплоотвода.





Добавить думаю нечего, все прекрасно видели, плата является отличным бюджетным вариантом, когда речь идет о контроллере заряда для одной банки Li-Ion аккумулятора небольшой емкости.
Думаю это одна из самых удачных разработок китайских инженеров, которая доступна всем из-за ничтожной цены.
Счастливо оставаться!

Показать телефон

Более 100 моделей гироскутеров в НАЛИЧИИ! У нас можно купить в РАССРОЧКУ до 6 месяцев. Оформить в магазине или онлайн на нашем сайте!

Цена: 9990 руб. 12490 руб. (У дешевой модели отсутствует: самобаланс, приложение, ручка для переноски, сумка.)

Наши преимущества:
- Только качественные и оригинальные товары
- У нас Вы можете посмотреть, потрогать, прокатиться, убедиться в качестве и только после этого купить!
- В отличие от других магазинов на Авито, мы публикуем собственные фотографии гироскутеров, снятые в нашем магазине

Характеристики гироскутера Смарт Баланс:
- Диаметр колес 10 дюймов (254 мм)
- Максимальная скорость 18 км/час
- Запас хода до 25 км
- Автоматическая самобаланасировака
- Мощность двигателя 1000 Вт (2 мотора по 500 Ватт)
- Аккумулятор Samsung Li-ion (с системой защиты)
- Емкость аккумулятора 4400 mah 36v
- Время полной зарядки 2 часа
- Платы TaoTao
- Мобильное приложение TaoTaoPlus
- Колонки Bluetooth
- LED подсветка
- Минимальная нагрузка 20 кг
- Максимальная нагрузка 120 кг
- Максимальный угол подъема 15°
- Размеры 710х350х340 мм
- Вес 13 кг
- Ручка для переноски

Комплектация:
- Гироскутер
- Сумка-чехол
- Зарядное устройство
- Инструкция на русском языке
- Гарантийный талон на 12 месяцев

Мобильное приложение для смартфонов:
Бесплатное мобильное приложение TaoTaoPlus для пользователей смартфонов на iOS и Android. После синхронизации по Bluetooth гироскутера с мобильным приложением ТаоТаоPlus Вы сможете управлять и настроить гироскутер под себя или ребенка:
- Задать пароль доступа к устройству
- Отследить геолокацию, основываясь на данных своего смартфона
- Настроить максимальную скорость передвижения
- Настроить чувствительность датчиков давления и гироскопов
- Установить время простоя до перехода в режим экономии энергии
Также вы получите доступ к информации:
- Общий пробег гироскутера, км
- Пробег за текущую поездку, км
- Скорость движения
- Температура устройства
- Напряжение
- Уровень заряда батареи

Условия доставки и оплаты
Доставка:
1) Самовывоз. Из магазина по адресу: Хабаровск, ул. Льва Толстого 3Б. Время работы: с 9:00 до 20:00 без перерыва и выходных.
2) Доставка транспортом компании. Бесплатно по Хабаровску в день заказа.
3) Транспортная компания. Бесплатная доставка до транспортной компании. Далее доставка в любой город России - по расценкам транспортных компаний.
4) Возможна доставка товаров другими способами, удобными для Вас. (Обговаривается при оформлении заказа)

Способы оплаты:
1) Наличными в магазине или при доставке товара курьеру в руки. При получении товара обязательно проверьте комплектацию товара, наличие гарантийного талона и чека.
2) Оплата банковской картой через платежный терминал в магазине.
3) Онлайн-оплата банковской картой на сайте магазина.
4) Перевод на карту Сбербанка.
5) Безналичный расчет. Для юридических лиц и ИП
6) Банковский перевод. Для частных лиц из регионов России через отделение любого банка.

Для начала нужно определиться с терминологией.

Как таковых контроллеров разряда-заряда не существует . Это нонсенс. Нет никакого смысла управлять разрядом. Ток разряда зависит от нагрузки - сколько ей надо, столько она и возьмет. Единственное, что нужно делать при разряде - это следить за напряжением на аккумуляторе, чтобы не допустить его переразряда. Для этого применяют .

При этом, отдельно контроллеры заряда не только существуют, но и совершенно необходимы для осуществления процесса зарядки li-ion аккумуляторов. Именно они задают нужный ток, определяют момент окончания заряда, следят за температурой и т.п. Контроллер заряда является неотъемлемой частью любого .

Исходя из своего опыта могу сказать, что под контроллером заряда/разряда на самом деле понимают схему защиты аккумулятора от слишком глубокого разряда и, наоборот, перезаряда.

Другими словами, когда говорят о контроллере заряда/разряда, речь идет о встроенной почти во все литий-ионные аккумуляторы защите (PCB- или PCM-модулях). Вот она:

И вот тоже они:

Очевидно, что платы защиты представлены в различных форм-факторах и собраны с применением различных электронных компонентов. В этой статье мы как раз и рассмотрим варианты схем защиты Li-ion аккумуляторов (или, если хотите, контроллеров разряда/заряда).

Контроллеры заряда-разряда

Раз уж это название так хорошо укрепилось в обществе, мы тоже будем его использовать. Начнем, пожалуй, с наиболее распространенного варианта на микросхеме DW01 (Plus).

DW01-Plus

Такая защитная плата для аккумуляторов li-ion встречается в каждом втором аккумуляторе от мобильника. Чтобы до нее добраться, достаточно просто оторвать самоклейку с надписями, которой обклеен аккумулятор.

Сама микросхема DW01 - шестиногая, а два полевых транзистора конструктивно выполнены в одном корпусе в виде 8-ногой сборки.

Вывод 1 и 3 - это управление ключами защиты от разряда (FET1) и перезаряда (FET2) соответственно. Пороговые напряжения: 2.4 и 4.25 Вольта. Вывод 2 - датчик, измеряющий падение напряжения на полевых транзисторах, благодаря чему реализована защита от перегрузки по току. Переходное сопротивление транзисторов выступает в роли измерительного шунта, поэтому порог срабатывания имеет очень большой разброс от изделия к изделию.

Вся схема выглядит примерно вот так:

Правая микросхема с маркировкой 8205А - это и есть полевые транзисторы, выполняющие в схеме роль ключей.

S-8241 Series

Фирма SEIKO разработала специализированные микросхемы для защиты литий-ионных и литий-полимерных аккумуляторов от переразряда/перезаряда. Для защиты одной банки применяются интегральные схемы серии S-8241 .

Ключи защиты от переразряда и перезаряда срабатывают соответственно при 2.3В и 4.35В. Защита по току включается при падении напряжения на FET1-FET2 равном 200 мВ.

AAT8660 Series

LV51140T

Аналогичная схема протекции литиевых однобаночных аккумуляторов с защитой от переразряда, перезаряда, превышения токов заряда и разряда. Реализована с применением микросхемы LV51140T .

Пороговые напряжения: 2.5 и 4.25 Вольта. Вторая ножка микросхемы - вход детектора перегрузки по току (предельные значения: 0.2В при разряде и -0.7В при зарядке). Вывод 4 не задействован.

R5421N Series

Схемотехническое решение аналогично предыдущим. В рабочем режиме микросхема потребляет около 3 мкА, в режиме блокировки - порядка 0.3 мкА (буква С в обозначении) и 1 мкА (буква F в обозначении).

Серия R5421N содержит несколько модификаций, отличающихся величиной напряжения срабатывания при перезарядке. Подробности приведены в таблице:

SA57608

Очередной вариант контроллера заряда/разряда, только уже на микросхеме SA57608 .

Напряжения, при которых микросхема отключает банку от внешних цепей, зависят от буквенного индекса. Подробности см. в таблице:

SA57608 потребляет достаточно большой ток в спящем режиме - порядка 300 мкА, что отличает ее от вышеперечисленных аналогов в худшую сторону (там потребляемые токи порядка долей микроампера).

LC05111CMT

Ну и напоследок предлагаем интересное решение от одного из мировых лидеров по производству электронных компонентов On Semiconductor - контроллер заряда-разряда на микросхеме LC05111CMT .

Решение интересно тем, что ключевые MOSFET"ы встроены в саму микросхему, поэтому из навесных элементов остались только пару резисторов да один конденсатор.

Переходное сопротивление встроенных транзисторов составляет ~11 миллиом (0.011 Ом). Максимальный ток заряда/разряда - 10А. Максимальное напряжение между выводами S1 и S2 - 24 Вольта (это важно при объединении аккумуляторов в батареи).

Микросхема выпускается в корпусе WDFN6 2.6x4.0, 0.65P, Dual Flag.

Схема, как и ожидалось, обеспечивает защиту от перезаряда/разряда, от превышения тока в нагрузке и от чрезмерного зарядного тока.

Контроллеры заряда и схемы защиты - в чем разница?

Важно понимать, что модуль защиты и контроллеры заряда - это не одно и то же. Да, их функции в некоторой степени пересекаются, но называть встроенный в аккумулятор модуль защиты контроллером заряда было бы ошибкой. Сейчас поясню в чем разница.

Важнейшая роль любого контроллера заряда заключается в реализации правильного профиля заряда (как правило, это CC/CV - постоянный ток/постоянное напряжение). То есть контроллер заряда должен уметь ограничивать ток зарядки на заданном уровне, тем самым контролируя количество "заливаемой" в батарею энергии в единицу времени. Избыток энергии выделяется в виде тепла, поэтому любой контроллер заряда в процессе работы достаточно сильно разогревается.

По этой причине контроллеры заряда никогда не встраивают в аккумулятор (в отличие от плат защиты). Контроллеры просто являются частью правильного зарядного устройства и не более.

Кроме того, ни одна плата защиты (или модуль защиты, называйте как хотите) не способен ограничивать ток заряда. Плата всего лишь контролирует напряжение на самой банке и в случае выхода его за заранее установленные пределы, размыкает выходные ключи, отключая тем самым банку от внешнего мира. Кстати, защита от КЗ тоже работает по такому же принципу - при коротком замыкании напряжение на банке резко просаживается и срабатывает схема защиты от глубокого разряда.

Путаница между схемами защиты литиевых аккумуляторов и контроллеров заряда возникла из-за схожести порога срабатывания (~4.2В). Только в случае с модулем защиты происходит полное отключение банки от внешних клемм, а в случае с контроллером заряда происходит переключение в режим стабилизации напряжения и постепенного снижения зарядного тока.