Для представления информации в памяти ЭВМ (как числовой, так и нечисловой) используется двоичный способ кодирования. Элементарная ячейка памяти ЭВМ имеет длину 8 бит (байт). Каждый байт имеет свой номер (его называют адресом). Наибольшую последовательность бит, которую ЭВМ может обрабатывать как единое целое, называют машинным словом. Длина машинного слова зависит от разрядности процессора и может быть равной 16, 32 битам и т.д. Для кодирования символов достаточно одного байта. При этом можно представить 256 символов (с десятичными кодами от 0 до 255). Набор символов персональных ЭВМ IBM PC чаще всего является расширением кода ASCII (American Standart Code for Information Interchange - стандартный американский код для обмена информацией). В некоторых случаях при представлении в памяти ЭВМ чисел используется смешанная двоично-десятичная «система счисления», где для хранения каждого десятичного знака нужен полубайт (4 бита) и десятичные цифры от 0 до 9 представляются соответствующими двоичными числами от 0000 до 1001. Например, упакованный десятичный формат, предназначенный для хранения целых чисел с 18 значащими цифрами и занимающий в памяти 10 байт (старший из которых знаковый), использует именно этот вариант. Другой способ представления целых чисел - дополнительный код. Диапазон значений величин зависит от количества бит памяти, отведенных для их хранения. Например, величины типа Integer (все названия типов данных здесь и ниже представлены в том виде, в каком они приняты в языке программирования Turbo Pascal, в других языках такие типы данных тоже есть, но могут иметь другие названия) лежат в диапазоне от -32768 (-2 15) до 32767 (2 15 - 1), и для их хранения отводится 2 байта; типа Longlnt - в диапазоне от -2 31 до 2 31 - 1 и размещаются в 4 байтах; типа Word - в диапазоне от 0 до 65535 (2 16 - 1) (используется 2 байта) и т.д. Как видно из примеров, данные могут быть интерпретированы как числа со знаками, так и без знаков. В случае представления величины со знаком самый левый (старший) разряд указывает на положительное число, если содержит нуль, и на отрицательное, если - единицу. Вообще разряды нумеруются справа налево, начиная с 0. Ниже показана нумерация бит в двухбайтовом машинном слове. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Дополнительный код положительного числа совпадает с его прямым кодом. Прямой код целого числа может быть получен следующим образом: число переводится в двоичную систему счисления, а затем его двоичную запись слева дополняют таким количеством незначащих нулей, сколько требует тип данных, к которому принадлежит число. Например, если число 37 (10) = 100101 (2) объявлено величиной типа Integer, то его прямым кодом будет 0000000000100101, а если величиной типа Longlnt, то его прямой код будет. Для более компактной записи чаще используют шестнадцатеричный код. Полученные коды можно переписать соответственно как 0025 (16) и 00000025 (16) . Дополнительный код целого отрицательного числа может быть получен по следующему алгоритму: 1) записать прямой код модуля числа; 2) инвертировать его (заменить единицы нулями, нули - единицами); 3) прибавить к инверсному коду единицу. Например, запишем дополнительный код числа (-37), интерпретируя его как величину типа Longlnt: 1) прямой код числа 37 есть; 2) инверсный код; 3) дополнительный код или FFFFFFDB (16) . При получении числа по его дополнительному коду прежде всего необходимо определить его знак. Если число окажется положительным, то просто перевести его код в десятичную систему счисления. В случае отрицательного числа необходимо выполнить следующий алгоритм: 1) вычесть из кода числа 1; 2) инвертировать код; 3) перевести в десятичную систему счисления. Полученное число записать со знаком минус. Примеры. Запишем числа, соответствующие дополнительным кодам: а) 0000000000010111. Поскольку в старшем разряде записан нуль, то результат будет положительным. Это код числа 23; б) 1111111111000000. Здесь записан код отрицательного числа. Исполняем алгоритм: 1) 1111I11111000000 (2) - 1 (2)= 1111111110111111 (2) ; 2) 0000000001000000; 3) 1000000 (2) = 64 (10) . Ответ: -64. Несколько иной способ применяется для представления в памяти персонального компьютера действительных чисел. Рассмотрим представление величин с плавающей точкой. Любое действительное число можно записать в стандартном виде М10 р, где 1

Персональный компьютер IBM PC позволяет работать со следующими действительными типами (диапазон значений указан по абсолютной величине): Покажем преобразование действительного числа для представления его в памяти ЭВМ на примере величины типа Double. Как видно из таблицы, величина это типа занимает в памяти 8 байт. На рисунке показано, как здесь представлены поля мантиссы и порядка: Можно заметить, что старший бит, отведенный под мантиссу, имеет номер 51, т.е. мантисса занимает младшие 52 бита. Черта указывает здесь на положение двоичной запятой. Перед запятой должен стоять бит целой части мантиссы, но поскольку она всегда равна 1, здесь данный бит не требуется и соответствующий разряд отсутствует в памяти (но он подразумевается). Значение порядка для упрощения вычислений и сравнения действительных чисел хранится в виде смещенного числа, т.е. к настоящему значению порядка перед записью его в память прибавляется смещение. Смещение выбирается так, чтобы минимальному значению поряд- ка соответствовал нуль. Например, для типа Double порядок занимает 11 бит и имеет диапазон от 2~ 1023 до 2 1023 , поэтому смещение равно Ю23 (10) = 1111111111 (2) . Наконец, бит с номером 63 указывает на знак числа. Таким образом, из вышесказанного вытекает следующий алгоритм для получения представления действительного числа в памяти ЭВМ: 1) перевести модуль данного числа в двоичную систему счисления; 2) нормализовать двоичное число, т.е. записать в виде М-2 Р, где М- мантисса (ее целая часть равна 1 (2)) и р - порядок, записанный в десятичной системе счисления; 3) прибавить к порядку смещение и перевести смещенный порядок в двоичную систему счисления; 4) учитывая знак заданного числа (0 - положительное; 1 - отрицательное), выписать его представление в памяти ЭВМ. Пример. Запишем код числа -312,3125. 1) Двоичная запись модуля этого числа имеет вид 100111000,0101. 2) Имеем 100111000,0101 = 1,001110000101 2 8 . 3) Получаем смещенный порядок 8 + 1023 = 1031. Далее имеем Ю31 (10) = = 10000000111 (2) . . 4) Окончательно

1) Прежде всего замечаем, что это код положительного числа, поскольку в разряде с номером 63 записан нуль. Получим порядок этого числа: 01111111110 (2) = 1022 (10) ; 1022 - 1023 = -1. 2) Число имеет вид 1,1100011-2“ 1 или 0,11100011. 3) Переводом в десятичную систему счисления получаем 0,88671875.

Вся информация в ЭВМ хранится в виде наборов бит, то есть комбинаций 0 и 1. Числа представляются двоичными комбинациями в соответствии с числовыми форматами, принятыми для работы в данной ЭВМ, а символьный код устанавливает соответствие букв и других символов двоичным комбинациям.

Для чисел имеется три числовых формата:

    двоичный с фиксированной точкой;

    двоичный с плавающей запятой;

    двоично-кодированный десятичный (BCD).

В двоичном формате с фиксированной точкой числа могут быть представлены без знака (коды) или со знаком. Для представления чисел со знаком в современных ЭВМ в основном применяется дополнительный код. Это приводит к тому, что, как показано ранее, отрицательных чисел при заданной длине разрядной сетки можно представить на одно больше, чем положительных. Хотя операции в ЭВМ осуществляются над двоичными числами, для записи их в языках программирования, в документации и отображения на экране дисплея часто используют более удобное восьмеричное, шестнадцатеричное и десятичное представление.

В двоично-кодированном десятичном формате каждая десятичная цифра представляется в виде 4 битного двоичного эквивалента. Существуют две основные разновидности этого формата: упакованный и неупакованный. В упакованном BCD-формате цепочка десятичных цифр хранится в виде последовательности 4-битных групп. Например, число 3904 представляется в виде двоичного числа 0011 1001 0000 0100. В неупакованном BCD-формате каждая десятичная цифра находится в младшей тетраде 8-битной группы (байте), а содержимое старшей тетрады определяется используемой в данной ЭВМ системой кодирования, и в данном случае несущественно. То же число 3904 в неупакованном формате будет занимать 4 байта и иметь вид:

xxxx0011 xxxx1001 xxxx0000 xxxx0100 .

Числа с плавающей запятой обрабатываются на специальном сопроцессоре (FPU - floating point unit), который, начиная с МП I486, входит в состав БИС микропроцессора. Данные в нем хранятся в 80-разрядных регистрах. Управляя настройками сопроцессора, можно изменять диапазон и точность представления данных этого типа (таблица 14.1 ).

Таблица 14.1.

Тип данных

Размер (бит)

Диапазон

Обрабатывающий блок

Целые без знака

1 двойное слово

Целые со знаком

1 двойное слово

2147483648...+2147483647

1 учетверенное слово

Числа с плавающей запятой

действительное число

с двойной точностью

≈(0.18*10 309)

с увеличенной точностью

≈(0.12*10 4933)

Двоично-десятичные числа

1 байт неупакованное

1 байт упакованное

10 байт упакованное

0...(99...99) 18цифр

Организация оперативной памяти

ОП является основной памятью для хранения информации. Она организована как одномерный массив ячеек памяти размером в 1 байт. Каждый из байтов имеет уникальный 20 битный физический адрес в диапазоне от 00000 до FFFFFh (здесь и далее для записи адресов используется шестнадцатеричная система счисления, признаком которой является символ h в конце кода). Таким образом, размер адресного пространства ОП составляет 2 20 = 1Мбайт. Любые два смежных байта в памяти могут рассматриваться как 16-битовое слово. Младший байт слова имеет меньший адрес, а старший - больший. Так шестнадцатеричное число 1F8Ah, занимающее слово, в памяти будет расположено в последовательности 8Ah, 1Fh. Адресом слова считается адрес его младшего байта. Поэтому 20 битовый адрес памяти может рассматриваться и как адрес байта, и как адрес слова.

Команды, байты и слова данных можно размещать по любому адресу, что позволяет экономить память вследствие ее более полного заполнения. Однако для экономии времени выполнения программ целесообразно размещать слова данных в памяти, начиная с четного адреса, так как микропроцессор передает такие слова за один цикл работы шины. Слово с четным адресом называется выровненным по границе слов. Невыровненные слова данных с нечетным адресом допустимы, но для их передачи требуется два цикла шины, что снижает производительность ЭВМ. Заметим, что необходимое количество циклов считывания слова данных инициируется микропроцессором автоматически. Следует иметь в виду, что при операциях со стеком слова данных должны быть выровнены, а указатель стека инициирован на четный адрес, так как в таких операциях участвуют только слова данных.

Поток команд разделяется на байты при заполнении очереди команд внутри микропроцессора. Поэтому выравнивание команд практически не влияет на производительность и не используется.

Адресное пространство ОП делится на сегменты. Сегмент состоит из смежных ячеек ОП и является независимой и отдельно адресуемой единицей памяти, которая в базовой архитектуре персональной ЭВМ имеет фиксированную емкость 2 16 = 64К байт. Каждому сегменту назначается начальный (базовый) адрес, являющийся адресом первого байта сегмента в адресном поле ОП. Значение физического адреса ячейки складывается из адреса сегмента и смещения ячейки памяти относительно начала сегмента (внутрисегментное смещение). Для хранения значений адреса сегмента и смещения используются 16-битовые слова.

Чтобы получить 20-битовый физический адрес, микропроцессор автоматически осуществляет следующие операции. Значение базового адреса сегмента умножается на 16 (сдвиг на 4 разряда влево) и суммируется со значением смещения в сегменте (рис. 14.3 ). В результате получается 20-битовое значение физического адреса. При суммировании может возникнуть перенос из старшего бита, который игнорируется. Это приводит к тому, что ОП оказывается как бы организованной по кольцевому принципу. За ячейкой с максимальным адресом FFFFFh следует ячейка с адресом 00000h.

Рис. 14.3. Схема получения физического адреса

Сегменты физически не привязаны к конкретному адресу ОП, и каждая ячейка памяти может принадлежать одновременно нескольким сегментам, так как базовый адрес сегмента может определяться любым 16-битовым значением. Сегменты могут быть смежными, неперекрывающимися, частично или полностью перекрывающимися. Вместе с тем, в соответствии с алгоритмом вычисления физического адреса, начальные адреса сегментов всегда кратны 16.

Логические и арифметические основы и принципы работы ЭВМ

Литература : версия для печати

Учебники к курсу

    Гуров В.В., Чуканов В.О. Основы теории и организации ЭВМ

    Варфоломеев В.А., Лецкий Э.К., Шамров М.И., Яковлев В.В. Архитектура и технологии IBM eServer zSeries Интернет-университет информационных технологий - ИНТУИТ.ру, 2005

    Богданов А.В., Корхов В.В., Мареев В.В., Станкова Е.Н. Архитектуры и топологии многопроцессорных вычислительных систем Интернет-университет информационных технологий - ИНТУИТ.ру, 2004

    Новиков Ю.В., Скоробогатов П.К. Основы микропроцессорной техники Интернет-университет информационных технологий - ИНТУИТ.ру, 2006

Список литературы

    Аванесян Г.Р., Лёвшин В.П. Интегральные микросхемы ТТЛ, ТТЛШ: Справочник М.: Машиностроение, 1993

    Атовмян И.О. Архитектура вычислительных систем М.: МИФИ, 2002

    Борковский А. Англо-русский словарь по программированию и информатике (с толкованиями) М.: Русский язык, 1990

    Бродин В.Б., Шагурин И.И. Микропроцессор i486.Архитектура, программирование, ин­терфейс М.:ДИАЛОГ-МИФИ,1993

    Гуров В.В. Синтез комбинационных схем в примерах М.: МИФИ, 2001

    Гуров В.В., Ленский О.Д., Соловьев Г.Н., Чуканов В.О. Архитектура, структура и организация вычислительного процесса в ЭВМ типа IBM PC М.: МИФИ, 2002. Под ред. Г.Н. Соловьева

    Каган Б.М. Электронные вычислительные машины и системы М.: Энер­го­атом­из­дат, 1991

    Казаринов Ю.М., Номоконов В.Н., Подклетнов Г.С. и др. Микропроцессорный ком­п­лект К1810: Структура, программирование, применение М.: Высшая школа, 1990. Под ред. Ю.М. Казаринова

    Корнеев В.В., Киселев А.В. Современные микропроцессоры М.: Нолидж, 1998

    Лю Ю-Чжен, Гибсон Г. Микропроцессоры семейства 8086/8088 М.:Радио и связь, 1987

    Майоров С.А., Новиков Г.И. Структура электронных вычислительных машин Л.: Машиностроение, Ленингр.отд-ие, 1979

    Никитин В.Д., Соловьев Г.Н. Операционнные системы М.:Мир, 1989

    Савельев А.Я. Прикладная теория цифровых автоматов М.: Высшая школа, 1987

    ГОСТ 15133-77. Приборы полупроводниковые, термины и определения

    ГОСТ 17021-75.Микроэлектроника, термины и определения

Логические и арифметические основы и принципы работы ЭВМ

Предметный указатель : версия для печати

ПОСТРАНИЧНО I А Б В Д З И К Л М Н О П Р С Т У Ф Ц Ч Ш Э

автомат Неймана

10 (1 ),

автомат Тьюринга

10 (1 ),

2 (1 , 2 , 3 , 4 ),

Кроме обычной алгебры существует специальная, основы которой были заложены английским математиком XIX века Дж. Булем. Эта алгебра занимается так называемым исчислением высказываний.

Ее особенностью является применимость для описания работы так называемых дискретных устройств, к числу которых принадлежит целый класс устройств автоматики и вычислительной техники.

При этом сама алгебра выступает в качестве модели устройства. Это означает, что работа произвольного устройства указанного типа может быть лишь в каком-то отношении описана с помощью построений этой алгебры. Действительное реальное устройство физически работает не так, как это описывает алгебра логики. Однако применение положений этой теории позволяет сделать ряд полезных в практическом отношении обобщений.

... лекция 2, страница 1 »

12 (1 ), 14 (1 , 2 ),

аргумент

2 (1 , 2 , 3 ),

быстродействие

1 (1 , 2 ),

Быстродействие характеризуется задержкой распространения сигнала, вносимой одним элементарным элементом (конъюнктором, дизъюнктором и т. д.). ... лекция 1, страница 1 »

дешифратор адреса

12 (1 ),

диаграмма Вейча

4 (3 , 4 ),

дизъюнкция

2 (3 , 4 ),

Это сложное высказывание истинно тогда, когда истинно хотя бы одно высказывание, входящее в него. ... лекция 2, страница 4 »

запоминающее устройство

10 (2 ),

Запоминающее устройство, или память – это совокупность ячеек, предназначенных для хранения некоторого кода. Каждой из ячеек присвоен свой номер, называемый адресом... лекция 10, страница 2 »

импликантная матрица

4 (2 ),

Составляется импликантная матрица, колонки которой именуются конституентами единицы, а строки – простыми импликантами. ... лекция 4, страница 2 »

инверсия

2 (3 ),

инвертор

13 (1 ),

Квайн-Мак-Класки

4 (2 ),

кодирование команд

11 (1 , 2 ),

конъюнкция

2 (3 , 4 ),

Функция конъюнкции истинна тогда, когда истинны одновременно оба высказывания. ... лекция 2, страница 4 »

косвенная адресация

11 (2 ),

мантисса

7 (2 ),

машина Тьюринга

10 (1 ),

машинная бесконечность

9 (3 ),

микропроцессор

14 (1 , 2 ),

минимизация

3 (2 , 3 ),

При минимизации ФАЛ стремятся получить форму, в которой будет меньше букв, чем в исходной. По отношению к ДНФ эта форма называется сокращенной (Сок. ДНФ).

Смысл построения Сок. ДНФ заключается в том, что в нее входят такие элементарные произведения, которые своими единицами покрывают не одну единицу исходной функции, а несколько.

... лекция 3, страница 2 »

неполностью определенная функция

5 (1 ),

Неполностью определенной функцией является такая переключательная функция, значения которой на некоторых наборах аргументов могут быть произвольными (т.е. равными "0" или "1"). ... лекция 5, страница 1 »

обратный код

7 (5 ),

Обратным называется код, для которого в знаковом разряде положительного числа пишется "0", в цифровых - модуль числа, а для отрицательного - в знаковом разряде пишется единица, в цифровых - инвертированные разряды исходного числа. ... лекция 7, страница 5 »

однородность

6 (1 ),

12 (1 ),

относительная адресация

11 (2 ),

6 (2 , 3 , 4 ),

персональная ЭВМ

14 (1 , 2 ),

плотность упаковки

1 (1 ),

Важный показатель – плотность упаковки, количество единиц элементов, приходящихся на 1см 3 . ... лекция 1, страница 1 »

7 (2 ),

прямая адресация

11 (2 ),

прямой код

7 (4 , 5 ),

6 (1 , 2 , 3 ),

регистр адреса

12 (1 ),

регистр команд

12 (1 ),

регистровая память

14 (1 ),

сдвиг делителя

9 (1 ),

3 (1 , 2 , 3 ),

14 (1 , 2 ),

2 (1 , 2 ),

система счисления

6 (1 , 2 , 3 , 4 ),

Способ представления изображения произвольных чисел с помощью некоторого конечного множества символов назовем системой счисления. ... лекция 6, страница 1 »

способ адресации

11 (2 ),

сумматор

13 (2 ),

счетчик команд

12 (1 ),

точность

7 (1 , 2 ),

управляющий сигнал

12 (1 ),

физический адрес

14 (2 ),

фиксированная запятая

7 (1 , 2 , 4 ),

2 (1 , 2 , 3 , 4 ),

число с плавающей запятой

14 (2 ),

штрих Шеффера

5 (3 ),

элемент Неймана

10 (1 ),

Элемент Неймана (ЭН) – это устройство, которое на каждом такте пребывает в одном из конечного числа состояний r i R, образующих его алфавит... лекция 10, страница 1 »

ПОСТРАНИЧНО I А Б В Д З И К Л М Н О П Р С Т У Ф Ц Ч Ш Э

Форматы представления данных в памяти ЭВМ. Машинные коды.

План.

1. Форматы представления данных в памяти ЭВМ.

a. Представление чисел в форме с фиксированной точкой

b. Представление чисел в форме с плавающей точкой

2. Машинные коды: прямой, обратный, дополнительный.

Форматы представления данных в памяти ЭВМ.

Для представления чисел (данных) в памяти ЭВМ выделяется оп­ределенное количество битов. В отличие от нумерации разрядов числа биты в байте нумеруются слева направо, начиная с 0. Каждый байт в памяти ЭВМ имеет свой порядковый номер, который называется абсолютным адресам байта . Байт является основной единицей хранения данных, это наименьшая адресуемая единица обмена информации в оперативной па­мяти ЭВМ, то есть минимальная единица обмена информации, имеющая адрес в памяти ЭВМ.

Последовательность нескольких смежных байтов образует поле данных . Количество байтов поля называется длиной поля , а адрес само­го левого байта поля - адресом поля . Обработка информации может вестись либо побайтно, либо полями данных (или форматом данных). Форматы данных показывают, как информация размещается в оперативной памяти и регистрах ЭВМ. Форматы данных различают по длине, типу данных и структуре, а каждое значение, содержащееся в байте может быть интерпретировано по разному:

– кодированное представление символа внешнего алфавита (при вводе и выводе данных);

– целым знаковым или беззнаковым числом (при внутреннем представлении чисел в памяти ЭВМ);

– частью команды или более сложной единицы данных и т.д.

В ЭВМ существуют следующие формы представления целых чисел: полуслово (байт), слово (два последовательных байта, пронумерованных слева направо от 0 до 15), двойное слово (4 байта).

Если в указанных форматах размещаются числа, то веса их разрядов возрастают справа налево.

В ЭВМ для представления чисел используется естественная (представление числа с фиксированной точкой) и полулогарифмическая (представление числа с плавающей точкой) формы.

Представление чисел в форме с фиксированной точкой.

В используемых представлениях чисел “запятая” или “десятичная точка” - это условный символ, предназначенный для разделения целой и дробной частей числа. Запятая имеет, следовательно, точный математический смысл, независимо от используемой системы счисления, и ее положение нисколько не меняет алгоритм вычислений или форму результата.

Если обрабатываемые числа имеют величину одного порядка, можно фиксировать позицию запятой или точки (такое представление называется представлением с фиксированной точкой). Тогда при обработке чисел в машине нет необходимости учитывать положение (представлять) десятичной точки. И тогда ее положение на уровне программы считается одинаковым и учитывается только в результате.

Существует в основном 2 способа фиксирования десятичной точки:

1) точка располагается справа от младшей цифры числа, и мы имеем целые числа;

2) точка располагается слева от старшей цифры числа, и мы имеем дробные числа по абсолютному значению меньше единицы.

Целые положительные числа можно представлять непосредственно в двоичной системе счисления (двоичном коде). В такой форме представления легко реализуется на компьютере двоичная арифметика.

Если же нужны и отрицательные числа, то знак числа может быть закодирован отдельным битом (обычно это старший бит). Старший разряд является знаковым, если он содержит 1 , то число отрицательное , если 0 , то число положительное .

При шестнадцатиразрядной сетке мы имеем:

В общем случае диапазон представления целых чисел равен (n – число разрядов в формате):

– для беззнаковых 0 ≤ x ≤ 2 n -1 (при n=8 от 0 до 255)

– для знаковых -2 n -1 ≤ x ≤ +2 n -1 -1 (при n=8 от -128 до 127);

Существенным недостатком такого способа представления является ограниченный диапазон представления величин, что приводит к переполнению разрядной сетки при выходе за допустимые границы и искажению результата, например, если рассмотреть пяти разрядную знаковую сетку, то при сложении двух чисел +22 и +13 получим:

Представление чисел в форме с плавающей точкой.

Действительные числа в математике представляются конечными или бесконечными дробями. Однако в компьютере числа хранятся в регистрах и ячейках памяти, которые являются последовательностью байтов с ограниченным количеством разрядов. Следовательно, бесконечные или очень длинные числа усекаются до некоторой длины и в компьютерном представлении выступают как приближенные.

Для представления действительных чисел, как очень маленьких, так и очень больших, удобно использовать форму записи чисел в виде произведения:

А = ± М·n ± p

где n - основание системы счисления;

M – мантисса;

р – целое число, называемое порядком (определяет местоположение десятичной точки в числе).

Такой способ записи чисел называется представлением числа с плавающей точкой .

Пример: -245,62=-0,24565·10 3 , 0,00123=0,123·10 -2 =1,23·10 -3 =12,3·10 -4

Очевидно, такое представление не однозначно.

Если мантисса заключена между n -1 и 1 (т.е. 1/n £ |M| <1), то представление числа становится однозначным, а такая форма назы­вается нормализованной .

Пример : для десятичной системы счисления - 0,1 < |m| < 1 (мантисса - число меньше 1, и первая цифра после запятой отлична от нуля, т.е. значащая).

Действительные числа в компьютерах различных типов записываются по-разному, тем не менее, существует несколько международных стандартных форматов, различающихся по точности, но имею­щих одинаковую структуру. Для основанного на стандарте IEEE – 754 (определяет представление чисел с одинарной точностью (float ) и с двойной точностью (double )) представление вещественного числа в ЭВМ используется m+p+1 бит, распределяемые следующим образом: один разряд (S)- используется для знака мантиссы, p – разрядов определяют порядок, m разрядов определяют абсолютную величину мантиссы. Для записи числа в формате с плавающей запятой одинарной точности требуется тридцатидвухбитовое слово. Для записи чисел с двойной точностью требуется шестидесятичетырёхбитовое слово.

1 p-1 0 m-1 0
S Порядок Дробная часть М

Так как порядок может быть положительным или отрицатель­ным, нужно решить проблему его знака. Величина порядка представляется с избытком, т.е., вместо истинного значения порядка хранится число, называемое характеристикой (или смещенным порядком ).

Смещение требуется, чтобы не вводить в число еще один знак. Смещённый порядок всегда положительное число. Для одинарной точности смещение принято равным 127, а для двойной точности – 1023 (2 p -1 -1) . В десятичной мантиссе после запятой могут присутствовать цифры 1:9, а в двоичной - только 1. Поэтому для хранения единицы после двоичной запятой не выделяется отдельный бит в числе с плавающей запятой. Единица подразумевается, как и двоичная запятая . Кроме того, в формате чисел с плавающей запятой принято, что мантисса всегда больше 1. То есть диапазон значений мантиссы лежит в диапазоне от 1 до 2.

Примеры :

1) Определить число с плавающей запятой, лежащее в четырёх соседних байтах:

11000001 01001000 00000000 00000000

Разделим двоичное представление на знак (1 бит), порядок (8 бит) и мантиссу (23 бита):

1 10000010 10010000000000000000000

– Знаковый бит, равный 1 показывает, что число отрицательное.

– Экспонента 10000010 в десятичном виде соответствует числу 130. Скорректируем порядок: вычтем число 127 из 130, получим число 3.

– К мантиссе добавим слева скрытую единицу 1 ,100 1000 0000 0000 0000 0000, перенесем порядок от скрытой единицы вправо на полученную величину порядка: 1 100, 1000 0000 0000 0000 0000.

– И, наконец, определим десятичное число: 1100,1 2 = 12,5 10

– Окончательно имеем -12,5

2) Определить число с плавающей запятой, лежащее в четырёх соседних байтах:

01000011 00110100 00000000 00000000

– Знаковый бит, равный 0 показывает, что число положительное.

– Экспонента 10000110 в десятичном виде соответствует числу 134. Вычтя число 127 из 134, получим число 7.

– Теперь запишем мантиссу: 1 ,011 0100 0000 0000 0000 0000

– И, наконец, определим десятичное число: 10110100 2 =180 10

Поскольку под мантиссу и порядок отводится определенное число разрядов, соответственно m и p , то можно оценить диапазон чисел, которые можно представить в нормализованном виде в системе счисления с основанием n .

Если m=23 и p=8 (4 байта), то диапазон представленных чисел от 1,5·10 -45 до 3,4·10 +38 (обеспечивает точность с 7-8 значащими цифрами).

Если m=52 и p=11 (8 байт), то диапазон представленных чисел от 5,0·10 -324 до 1,7·10 +308 (обеспечивает точность с 15-16 значащими цифрами).

Чем больше разрядов отводится под запись мантиссы, тем выше точность представления числа. Чем больше разрядов занимает поря­док, тем шире диапазон от наименьшего отличного от нуля числа до наибольшего числа, представимого в компьютере при заданном формате.

При выполнении операций с плавающей точкой возникает меньше проблем с переполнением разрядной сетки, чем для операций с фиксированной точкой. Однако операции с плавающей точкой более сложные, так как они требуют нормализации и денормализации мантисс.

Любая информация представляется в компьютере как последовательность байтов . В самих байтах нет информации о том, как их надо трактовать (числа/текстовые знаки/графическое изображение). В любом случае информация кодируется в виде последовательности 0 и 1, т.е. положительных целых двоичных чисел (число записывается с помощью двух цифр – 0/1). Их интерпретация зависит от того, какая программа и какое действие с ними совершает в данный конкретный момент. Если в программе присутствует последовательность команд, ориентированных на работу с числами, то байты рассматриваются, как числа. Если в программе предполагается действие с текстовыми данными, то байты интерпретируются, как условные числовые коды, обозначающие знаки текста.

I.Системы счисления

Любое число представляет собой кратную запись суммы (например, 168 = 100 + 60 + 8 = 1 10 2 + 6 10 1 + 8 10 0), т.е. число – последовательность коэффициентов при степенях числа 10 => если имеем число d = a 1 a 2 …a n (a 1 a 2 …a n – цифры), то d = a 1 10 n-1 + a 2 10 n-2 +…a n 10 0 .

Кратко подобные суммы записываются следующим образом: n

d = ∑ a i 10 n-i

Число 10 – основание десятичной системы счисления, если в качестве основания взять другое число, то получим другую систему записи чисел, т.е. другую систему счисления .

Система счисления задается величиной основания и множеством цифр. Цифры – специальные знаки, используемые для записи чисел. Их количество обязательно должно быть равно величине основания.

Любое число можно представить в различных системах счисления, эти представления будут строго (взаимно однозначно) соответствовать друг другу.

К примеру, определим 16-ричную систему счисления: основание = 16 =>должно быть 16 цифр (0-15) = 1,2,3,4,5,6,7,8,9,A,B,C,D,E,F. Здесь A-F – цифры 10,11,12,13,14,15. Такие обозначения используют в связи с тем, что цифры нельзя записывать с помощью других цифр, иначе возникнет путаница в чтении чисел. Запишем, как будет выглядеть в этой системе счисления десятичное число 168, имея в виду общий закон записи числа, а также то, что здесь основанием является 16, имеем: 168 (10) = А 16 1 + 8 16 0 => А8 (16).

Арифметические действия в любой системе счисления выполняются аналогично тому, как это делается в 10-ричной системе счисления. Следует лишь величину основания.

К примеру, в 8-ричной системе счисления + 15 = 1 8 1 + 5 8 0 => + 13

14 = 1 8 1 + 4 8 0 => = 12

В компьютере все данные представляются в двоичной системе счисления. Например, число 5 в двоичной форме запишется как 101. Аналогично двоичное число 1111 соответствует десятичному числу 15: 1111 (2) = 1 2 3 + 1 2 2 + 1 2 1 + 1 2 0


Т.е. четырьмя битами можно представить не более 16 десятичных чисел (0-15).

В качестве краткой записи при просмотре или исправлении двоичных данных, находящихся в памяти ЭВМ, используется 16-ричная система счисления. Программы, обеспечивающие «непосредственную» работу человека с памятью ЭВМ, при взаимодействии с ним автоматически преобразовывают двоичное представление данных в 16-ричное и обратно. Любое данное, записанное в 1 байте, представляется всего двумя 16-ричными цифрами, первая из которых соответствует первое четверке битов, а вторая цифра – второй четверке битов.

Такая форма представления двоичных чисел (данных), находящаяся в памяти ЭВМ, - компромисс между человеком и его понятиями об удобстве и компьютером, где вся информация представляется только в двоичной форме.

II.Типы данных и их представления

Одним байтом (8 бит) можно представить 256 положительных целых чисел (0-255). Такой тип данных называется однобайтовым целым без знака.

Числа, превышающие 255, требуют более одного байта для своего представления. Для работы с ними используются типы:

- двухбайтовые целые без знака – обеспечивают представление целых положительных чисел (0-65535)

- четырехбайтовые целые без знака - обеспечивают представление целых положительных чисел (0-≈4,2 млрд.)

Вышеперечисленные типы предполагают, что число должно быть только положительным => называются «без знака». Они отличаются объемом памяти, который отводится для хранения числа. Такие типы используются для числового кодирования знаков текста, цвета, интенсивности графических точек, нумерации элементов и т.д.

Для работы с целыми числами, которые могут быть не только положительными, но и отрицательными, используют типы:

- однобайтовые целые со знаком

- двухбайтовые целые со знаком

- четырехбайтовые целые со знаком

Они отличаются объемом памяти, который отводится для хранения каждого числа.

В основе представление как положительных, так и отрицательных чисел лежит следующий принцип: общее количество числовых кодов, возможных для данного количества байтов (например, для однобайтового – 256), делится пополам, одна половина используется для представления положительных чисел и нуля, другая – отрицательных чисел. Отрицательные числа представляются, как дополнение до общего количества числовых кодов. Например, для однобайтового число (-1) = 255, (-2) – 254 и т.д. до 128, которое обозначает число (-128) => однобайтовое целое со знаком позволяет работать с целыми числами от (-128) до 127, двухбайтовое – от (- 32768) до 32767, четырехбайтовое – от (≈-2,1 млрд.) до 2,1 млрд. (2147483648).

Числа со знаками используются для представления числовых данных, с которыми производятся арифметические действия.

При взаимодействии с программами используются следующие типы данных :

- целый коротк ий (SHORT)

- целый обычный (INTEGER)

- целый длинный (LONG INTEGER)

- вещественный с одинарной точностью (FLOAT/REAL)

- вещественный с двойной точностью (DOUBLEFLOAT/REAL)

- символьный (строковый, текстовый) (CHAR)

- логический (LOGIKAL)

Целый короткий, целый обычный и целый длинный – типы соответственно однобайтовое целое со знаком, двухбайтовое целое со знаком, четырехбайтовое целое со знаком.

В информатике при записи чисел в качестве знака, разделяющего дробную и целую часть, используется не запятая, а точка (например, 68.314). Эта точка фиксирует позицию, после которой указана дробная часть. Изменение местоположения точки приводит к изменению числа => такой вид записи (формат записи) вещественных чисел называется форматом с фиксированной точкой .

Вещественное число с плавающей точкой состоит из 2 частей:

- мантисса

- порядок

Они разделены специальным знаком (E,D). Мантисса представляет собой вещественное число с фиксированной точкой, порядок задается целым числом, указывающим в какую степень надо возвести число 10, чтобы при умножении на мантиссу получить число, которое имеется в виду. Например, 68.314 в таком формате можно записать как 6.8314Е+1 = 0.68314Е+2 = 683.14Е-1, что означает 6.8314 10 1 = 0.68314 10 2 = 68.314 10 -1 .

При таком виде записи местоположение точки не фиксировано, ее положение в мантиссе определяется величиной порядка. Мантисса и порядок могут иметь знак. Если мантисса по модулю <1, причем первая цифра не равна 0, то такой вид записи вещественного числа с плавающей точкой называется нормализованным (0.68314Е+2).

В компьютере вещественное число представляется в формате с плавающей точкой в нормализованном виде. Мантисса и порядок располагаются в соседних байтах, разделитель (E,D) отсутствует.

Обычно различают число с одинарной и двойной точностью . В первом случае при вводе или выводе числа в качестве разделителя мантиссы и порядка указывается E . В памяти ЭВМ такое число занимает обычно 4 байта. Во втором случае в качестве разделителя – D , в памяти ЭВМ число с двойной точностью занимает обычно 8 байтов. Этот тип обеспечивает значительно большую точность вычисления, чем одинарная точность.

Символьные данные составлены из отдельных текстовых знаков. Каждый знак представляется в памяти ЭВМ определенным числовым кодом. Для числового кодирования текстовых знаков используются специальные таблицы кодирования (однобайтовые, двухбайтовые и др.). Имеется в виду тип целого без знака, который использован для числового кодирования. Разные программы могут основываться на разных таблицах => тестовый документ, созданный с помощью одной программы, не обязательно может быть прочитан с помощью другой.

Величины логического типа принимают только два значения:

- TRUE (истина)

- FALSE (ложь)

К ним можно применять логические операции, основными из которых являются and (и), or (или), not (отрицание). And, or –к двум логическим величинам (a>c and a = b). Not – к одной логической величине (not a = b). Результатом выражения с логическими данными (логического выражения) является логическая величина. Результат операции and = TRUE только в одном случае, если обе величины = TRUE. Результат операции or = FALSE только в одном случае, если обе величины = FALSE. Операция not изменяет значение логической величины.

В смешанных выражениях приоритет у арифметических операций, затем – у сравнения, в последнюю очередь – у логических операций. Среди них наибольший приоритет у операции not, затем – and, после – or.

Файлы и их хранение

Любой информационный объект (отдельный документ, отдельная программа), хранящийся на диске и имеющий название является файлом . Информация о файлах (их название, размер, дата и время создания, место размещения на диске и т.д.) хранится в каталогах. Каталог – таблица, в каждой строке которой содержится информация о каком-либо файле или другом каталоге. Каталог = файл (кроме корневого) специального вида. При записи файлов на диск сведения о них автоматически записываются в те каталоги, которые указал пользователь. Условно для краткости речи говорят: «копировать файл из каталога в каталог», «создать каталог в каталоге», «удалить файл в каталоге» и т.п. Однако это на самом деле не происходит, поскольку в каталогах нет ни каталогов, ни файлов, там лишь сведения о них.

При формировании каждого диска на нем автоматически создается каталог, который называется корневым. Он занимает определенное место фиксируемого размера на диске. Его название состоит из 2 знаков : имя диска и двоеточие.

В корневом каталоге можно создать другие каталоги, которые называются подкаталогами или каталогами первого уровня иерархии. В свою очередь каталоги первого уровня иерархии могут создать каталоги второго уровня и т.д. Таким образом формируется иерархическая (древовидная) файловая структура данных на диске. Созданные пользователем каталоги – файлы. Каждый файл или каталог имеет название, состоящее из двух частей, разделенных точкой. Левая часть – имя , правая – расширение . Расширение вместе с точкой можно не указывать. В имени допустимо указывать не более 8 знаков (короткое имя) или не более 256 знаков (длинное имя). В расширении – не более 3 знаков. Стандартным считается использование в названии только латинских букв, цифр и знака подчеркивания. Рекомендуется для работы со списками файлы именовать с указанием расширения, а каталоги – без расширения.

Если требуется использовать какой-либо файл, необходимо указать в каком каталоге этот файл находится. Это делается с помощью указания пути (маршрута) к файлу по дереву каталога.

Маршрут (путь) – это список каталогов по мере их вложенности (от внешнего к внутреннему), разделенных знаком обратной черты (\ - обратный слеш). При указании файлов перед его названием указывается маршрут, а затем через \ - название файла (например, C:\Windows\win.com - означает, что файл win.com находится в каталоге Windows, который находится в корневом каталоге диска C). Такая запись называется полной спецификацией файла . Краткая включает в себя только название файла. Создаваемые пользователем каталоги и файлы размещаются при записи на своем месте памяти диска. Файлы могут быть записаны частями в разных местах диска. В процессе записи файл автоматически разбивается на такие части, и каждая из них записывается на то место, которое свободно в данный момент. Эти части называются кластерами . Размер кластера зависит от объема дисковой памяти, он обычно занимает несколько секторов. В связи с таким принципом записи вся область диска как бы делится на такие кластеры, и они используются для записи файлов. Считывание файлов также производится частями размером в один кластер: файл собирается из отдельных частей, записанных в разных местах диска. Такой способ хранения файлов осуществляется с помощью так называемой таблицы размещения файлов FAT. Она создается на каждом диске автоматически при его формировании и используется для запоминания мест хранения частей файла. Клетки FAT пронумерованы, начиная с «0», и соответствуют частям памяти диска размером в 1 кластер. В каждой клетке может содержаться 0 (указывает, что соответствующий кластер свободен), номер следующего кластера данного файла или специальный числовой код, обозначающий окончание цепочки кластеров для данного файла. Для представления чисел, находящихся в FAT, используются типы данных целое без знака. В зависимости от количества битов, используемых для представления каждого числа, различают 16 битовый FAT (16 разрядный), 32 битовый FAT (32 разрядный). В качестве специального кода, означающего окончание цепочки кластера, используется максимальное число, которое может быть представлено в клетке FAT. Для 16 разрядного таким числом является 65535 (в шестнадцатиричной форме – FFFFF). Программы, обеспечивающие просмотр и корректировку FAT, показывают этот код на экране в текстовой форме (E OF). В каталоге содержится информация о файле и в частности порядковый номер кластера, с которого начинается файл. Эта информация вместе с информацией, содержащейся в FAT (ссылки на следующие кластеры), используется для поиска и считывания файлов.

Компьютерные сети

I.Основные особенности

Компьютерная сеть – совокупность взаимосвязанных через каналы передачи информации компьютеров, обеспечивающих пользователей средствами обмена информации и коллективного использования ресурсов (аппаратных, программных, информационных).

Виды сетей:

- локальные – главная отличительная особенность заключается в том, что, как правило, все объединенные ею компьютеры связаны единым каналом связи. Расстояние между компьютерами – до 10 км (при использовании проводной связи), до 20 км (радиоканалы связи). Локальные сети связывают ЭВМ одного или нескольких близлежащих зданий одного учреждения.

- глобальные – для них свойственно разнообразие каналов связи и использование спутниковых каналов, позволяющих соединять узлы связи и ЭВМ, находящиеся на расстоянии 10-15 тыс. км друг от друга. Обычно имеют узловую структуру, состоят из подсетей, каждая из которых включает в себя коммуникационные узлы и каналы связи. Коммуникационные узлы обеспечивают эффективность функционирования сети, к ним подключаются компьютеры, локальные сети, большие ЭВМ и т.д.

- интрасети – объединяют пользователей, работающих в одной организации. Часть используют возможности имеющихся локальных и глобальных сетей. Такая сеть может связывать компьютеры, находящиеся как в одном здании, так и в разных местах мира.

В сети имеются общедоступные компьютеры, которые предоставляют информацию или вычислительные услуги пользователям. Сервером может называться компьютер, используемый для этой цели или место (в глобальных сетях), куда можно отправить запрос на выполнение какой-либо услуги. Таким местом может быть компьютер-сервер, локальная сеть, большая ЭВМ и т.п.

Компьютеры пользователей могут работать в сетях в двух режимах :

Режим рабочей станции – компьютер используется не только для отправки запроса к серверу и получения от него информации, но и для обработки этой информации

Режим терминала – последнее не производится: обработка информации осуществляется на сервере, а пользователю отправляется лишь результат этой обработки.

Компьютер-сервер по своим возможностям значительно превосходит рабочие станции и комплектуется множеством сетевых плат (адаптеров ), обеспечивающих подключение к сетям. Комплекс программ, которые обеспечивают работу в сети, - сетевое программное обеспечение. Оно определяет тот вид услуг, выполнение которых возможно в данной сети. В настоящее время распространены 2 основные концепции построения такого программного обеспечения:

- «концепция файлового сервера» – основана на том, что сетевое программное обеспечение должно предоставлять многим пользователем информационные ресурсы в виде файлов => сервер в такой сети называется файловым , а сетевое программное обеспечение – сетевой оперативной системой . Ее основная часть размещается на файловом сервере, а на рабочих станциях устанавливается ее небольшая часть, называемая оболочкой . Оболочка выполняет роль интерфейса между программами, обращающимися за ресурсом, и файловым сервером. Такой сервер представляет собой хранилище файлов, использующихся всеми пользователями. При этом как программы, так и файлы данных, находящиеся на файловом сервере, автоматически перемещаются на рабочую станцию, где и происходит обработка этих данных.

- «архитектура клиент-сервер» - в этом случае сетевое программное обеспечение состоит из программных систем 2 классов :

- программы-серверы – так называют программные системы, обеспечивающие работу сервера

- программы-клиенты – программные системы, обеспечивающие пользователей-клиентов

Работа систем этих классов организуется следующим образом: программы-клиенты посылают запросы программе-серверу, основная обработка данных производится на компьютере-сервере, а на компьютер пользователя посылается лишь результаты выполнения запроса.

В локальных сетях обычно используется концепция первого типа с одним файловым сервером. В глобальных основной является «архитектура клиент-сервер».

Представление информации и передача ее по сети производится в соответствии со стандартными соглашениями. Набор таких стандартных соглашений называется протоколом .

II.Типология локальной сети

Типология сети – логическая схема соединения каналами связи компьютеров (компьютеров).

Чаще всего в локальных сетях используются 3 основных типологии :

- моноканальная

- кольцевая

- звездообразная

Использование канала передачи информации, соединяющего узлы сети на физическом уровне, определяется протоколом, который называется методом доступа . Эти методы доступа реализуются соответствующими сетевыми платами (адаптерами). Такие адаптеры устанавливаются в каждом компьютере сети и обеспечивают передачу и прием информации по каналам связи.

Моноканальная типология – используется незамкнутый канал связи, к которому подключаются все компьютеры. Он называется моноканал-шиной (общей шиной).


Терминатор

Терминал служит для подключения к открытым кабелям сети, предназначен для поглощения передаваемого сигнала. В такой типологии, как правило, используется метод доступа с предварительным прослушиванием канала для определения свободен ли он.

Ethernet (скорость – 10 Мбит/сек) – название метода доступа. Может быть использован метод доступа Fast Ethernet (скорость – 100Мбит/сек)

Устойчивость к неисправностям отдельных узлов

Основные недостатки типологии:

Обрыв кабеля приводит к неработоспособности всей сети

Существенное уменьшение пропускной способности сети при значительных объемах трафика (- информация, передаваемая по сети)

Кольцевая типология


Использует в качестве канала связи замкнутое кольцо, состоящее из сегментов. Сегменты соединяются специальными устройствамирепитерами (повторителями). Репитер предназначен для соединения сегментов сети.

Основным методом доступа здесь является Token Ring – метод доступа с передачей маркера.

Имеется центральный узел коммуникации, объединяющий все компьютеры сети. Активный центр полностью управляет компьютерами сети. Метод доступа обычно также основан на использовании маркера (например, Arcnet со скоростью передачи информации 2 Мбита/сек). Кроме этого могут быть реализованы методы доступа Ethernet и Fast Ethernet.

Основные достоинства типологии:

Удобство с точки зрения управления взаимодействием компьютеров

Простота изменения и наращивания сети

Основные недостатки сети:

При отказе активного центра выходит из строя вся сеть

III.Структура глобальной сети

Между сетями возможен обмен информацией, для обеспечения такой связи используются средства межсетевого взаимодействия, называемые мостами , маршрутизаторами и шлюзами . Это специальный компьютер, в котором установлено два и более сетевых адаптеров, каждый из которых обеспечивает связь с одной сетью. Мост используется для связи сетей с однотипными внутрисетевыми каналами связи. Маршрутизатор связывает сети одного и того же вида, но различными внутрисетевыми каналами связи. Шлюзы используются для обеспечения связи сетей разного вида, для связи сетей с различными компьютерными системами (например, локальная сеть – большая ЭВМ, локальная сеть – глобальная сеть, конкретный персональный компьютер – глобальная сеть).

Глобальная сеть включает в себя подсети связи, к которым подключены локальные сети, рабочие станции и терминалы пользователей, а также компьютеры-серверы. Подсеть связи состоит из каналов передачи информации и коммуникационных узлов. Коммуникационные узлы предназначены для быстрой передачи информации по сети, выбора оптимального маршрута передачи информации и т.п., т.е. обеспечивают эффективность функционирования сети в целом. Такой узел – это либо специальное аппаратное устройство, либо специализированный компьютер с соответственным программным обеспечением.

Серверы и пользователи подключаются к глобальным сетям чаще всего через поставщиков услуг доступа к сети – провайдеров .

IV.Основные особенности глобальной сети Internet

Каждый пользователь и сервер обязательно имеют уникальный адрес. Сообщение, передаваемое по сети, снабжается адресами получателя и отправителя и в процессе передачи автоматически разбивается сетевым адаптером на части фиксированной длины, называемые пакетами . При этом каждый пакет (также автоматически) снабжается адресами отправителя и получателя. На принимающем компьютере пакеты собираются в единое сообщение.

Каждый сервер или пользовательский компьютер в сети имеют адреса 3 уровней :

- локальный адрес – адрес сетевого адаптера. Такие адреса назначаются производителями оборудования и являются уникальными, т.к. их назначение централизовано. Этот адрес используется только в пределах локальной сети.

- IP-адрес – представляет собой четырехбайтовую последовательность (4 однобайтовых целых без знака чисел) и состоит из 2 частей:

Первые 2 байта характеризуют сеть

Вторые 2 байта – конкретный узел

Такой адрес назначается администратором сети независимо от локального адреса. Если сеть должна работать как составная часть Internet, то номер сети (первые 2 байта) назначаются по рекомендации специальной организации ICANN. В противном случае, номер сети выбирается администратором произвольно. Номер узла (вторые 2 байта) назначаются администратором сети (например, 192.100.2.15). Узел может входить в несколько сетей. В этом случае он должен иметь несколько IP-адресов => IP-адрес характеризует не отдельный компьютер, а одно сетевое соединение. Сообщение, передаваемое по сети, снабжается IP-адресами получателя и отправителя.

- доменный адрес (доменное имя) – пользователю неудобно использовать IP-адреса в текущей работе => в Internet существует т.н. доменная система имен (DNS). В этой системе даются удобные для пользователя текстовые имена (идентификаторы), называемые доменными, за ними скрываются соответствующие IP-адреса. Пользователь работает с доменными именами, а соответствующее программное обеспечение с помощью специальных DNS-серверов автоматически преобразует их в адреса, которыми и снабжает передаваемые пакеты. Полное доменное имя (DNS-адрес) представляет собой последовательность имен, разделенных точкой. Первое слева – имя конкретного компьютера, затем – доменное имя организации, региона и т.д., последнее справа – имя т.н. корневого домена . Имена корневых доменов указывают на государство (например, ru – Россия, us – США, kz – Казахстан и т.д.) или на принадлежность к организации определенного типа (com - коммерческий, edu - образовательный, gov - правительственный, mil - военный, net - сетевой, org - организация). Позднее были определены и другие подобные корневые домены (arts – искусство, культура, firm – бизнес, info – информация, nom – индивидуальный).

Имена компьютеров, имеющих доступ в Internet через узел (например, сервер локальной сети), отделяются от последующей части в полном имени не точкой, а знаком @ («эт»). Например, [email protected].

V.Виды услуг в Internet

Предоставление услуг в Internet построено на основе модели «клиент-сервер». Для подключение компьютера к Internet достаточно иметь телефонную линию, провайдера, имеющего шлюз в Internet и модем (мо дулятор-дем одулятор) – специальный адаптер для подключения к глобальной сети через телефонную связь. Компьютер провайдера, используемый пользователями для работы в Internet, называется хостом . К наиболее известным услугам, предоставляемым серверами сети Internet , относятся:

- электронная почта (e-mail) – представляет собой процесс передачи сообщений между компьютерами

- передача файлов (FTP-система) – предназначена для пересылки файлов со специальных FTP-серверов любому пользователю, для получения файла следует указать полное имя сервера и полную спецификацию файла

- просмотр ресурсов (GOPHER-система) – обеспечивает поиск файлов на GOPHER-серверах по содержанию (тема, ключевое слово, фраза т.п.)

- телеконференции – предназначены для проведения дискуссий и обмена новостями, позволяют читать и посылать сообщения в открытые по разным темам информационные группы. Самой крупной является система телеконференций UseNet (пользователь может «подписаться» на любую из имеющихся тем, просматривать новости, посылать сообщения). Другой крупной системой телеконференций является IRC (Internet Relay Chat) (позволяет общаться участникам групп в реальном режиме времени (интерактивный режим), в этом случае пользователь видит на экране постоянно поступающую информацию и одновременно с этим может помещать свои сообщения, которые тут же поступают на экраны всех остальных участников группы)

- всемирная паутина www (world wide web) – представляет собой попытку объединить в одном информационном инструменте возможности указанных выше средств, добавив к ним передачу графических изображений, звуков, видео. В основе лежит принцип гипертекста (- система информационных объектов с перекрестными ссылками, в документах содержатся ссылки на другие документы, связанные по смыслу). Ранее применялся только для текстовых документов, в настоящее время гипертекстовый документ называется гипермедиа-документом . Объекты, на которые созданы ссылки, могут находиться на удаленных компьютерах. Гипермедиа-документы создаются с помощью специального языка HTML (язык разметки гипертекста) и хранятся на специальных серверах (www-сервер, web-сервер). Часто такие документы называют Web-страницами или Web-сайтами. Соответствующие программы-клиенты называются браузерами (от англ. browser) – поисковая система. Большинство современных браузеров обеспечивают доступ не только к страницам web-серверов, но и к другим видам услуг. При этом, обращаясь к различным ресурсам, используется т.н. URL-адреса (унифицированный указатель ресурсов). Он имеет следующий формат: код ресурса://спецификация запроса. Код ресурса определяет вид услуги, с которой необходимо работать: http – работа с web-серверами, для просмотра web-сайтов, ftp – ftp-система, gopher – gopher-система, news – связь с use-net, mailto – электронная почта и т.д.

Единицы измерения количества и объема информации.

N – формула Хартли.

В компьютере наименьшей единицей информации является бит . Представление каждого бита зависит от типа носителя информации. На бумаге бит представляется единицей или нулем, во внутренней памяти этому соответствует одно из двух состояний элемента ячейки. На магнитной поверхности это точка (намагниченная или ненамагниченная), а на поверхности оптического диска этому соответствует наличие или отсутствие углубления. Любая информация кодируется определенной комбинацией, т.е. двоичных знаков.

Количество информации.

Поскольку каждый бит может принимать одно из двух значений (0 или 1), то последовательность из i – битов может принимать N=2 ͥ различных значений => для любого N – значного алфавита (т.е.состоящего из N знаков), количество бит кот. требуется для представления любого из этих знаков, вычисляется по формуле: i = log2 N. Эта величина принимается в качестве количества информации, содержащейся в сообщении, состоящем из одного знака N-значного алфавита. Мощность – количество знаков в алфавите. Из формулы Хартли следует, что количество информации, содержащейся в сообщении, состоящем из М-знаков (m-разрядное сообщение), когда каждый знак равновероятно взят из алфавита мощностью N равно i = m*log2 N.

Например:

В слове ИНФОРМАТИКА 11 знаков, т.е. m=11. Если используется 32-значный алфавит, то получаем: i=11* log2 32 = 11*5 = 55.

Объём информации.

В отличие от количества, объём информации, записанный двоичными знаками в памяти компьютера или на внешнем носителе, вычисляется по количеству требуемых для такой записи двоичных знаков. Обычно в качестве наименьшей единицы измерения объёма информации используется байт, состоящий из 8 бит => каждый байт может принимать 256 (2^8) различных значений, при этом наименьшим будет 00000000, а наибольшим 11111111. Байты объединяются в более крупные наборы в зависимости от цели использования (ввод, вывод и другие). Для измерения объёма памяти используются и более крупные единицы измерения (Кб, Мб и Гб). Переход от меньшей единицы измерения к большей осуществляется с помощью коэффициента 2^10 = 1024.

1 Кб = 1024 байта

1 Мб = 1024 Кб

1 Гб = 1024 Мб

Для измерения памяти большего объема используют Терабайт (Тб) = 1024 Гб; и Петабайт (Пб) = 1024 Тб.

Любая информация представляется в компьютере как последовательность байтов, при этом в самих байтах нет ничего, что позволяет их трактовать как числа, текстовые или другие данные. В любом случае информация кодируется в виде последовательностей нулей и единиц, т.е. положительных целых двоичных чисел. Их интерпретация (понимание) зависит от того, какая программа и какое действие с ними совершает в данный и конкретный момент. Если в программе предполагается работа с числами, то байты представляются как числа, к которым применяемы арифметические действия.


Системы счисления.

Число – это знак, обозначающий определенное количество чего-либо.

Такие знаки записываются на основании правил, которые составляют систему счисления. Числа записываются с помощью специальных, отличных друг от друга знаков, которые называют цифрами. Существуют различные системы (непозиционные и позиционные). В непозиционных системах смысл каждой цифры не зависит от её расположения в числе.

Например:

В Римской системе V-пять, L-пятьдесят, X-десять. Недостатком таких систем является сложность записи чисел и отсутствие стандартных правил.

В позиционных системах счисления смысл цифры зависит от места её расположения в числе, а запись чисел и правила выполнения арифметических действий с ними стандартизированы и формализированы. В такой системе счисления число – это краткая запись суммы.

Например:

Число это последовательность коэффициентов при степенях числа 10. Число 10 называется основанием десятичной системы счисления. Если в качестве основания задать другое число, то получим другую систему счисления.

Позиционная система счисления задается величиной основания и множеству чисел. Основания равны количеству цифр. Наименьшее ноль, каждая следующая на единицу больше предыдущей. Любое количество можно представить в виде числа в различных системах счисления и эти представления будут взаимно однозначны соответствующие друг другу, обозначая одно и то же количество.

(10.10.2012 г.)

Например, рассмотрим представление чисел в 16-ричной системе счисления. Тогда основание равно 16. Цифры: первые десять цифр (от 0 до 9) мы можем позаимствовать из 10-ричной системы счисления, остальные шесть цифр, соответствующих числовым значениям от 10 до 15 обозначим A, B, C, D, E, F. При этом A = цифра 10, B = цифра 11 и т.д. F = цифра 15. Мы вынуждены сделать такое обозначение в связи с тем, что нельзя цифры обозначать с помощью с помощью других цифр.

Арифметические действия в любой системе счисления выполняется аналогично тому, как это делается в десятеричной системе, следует лишь учитывать величину основания. Например: 15+14=31 (восьмеричная система счисления). В компьютере все данные представляются в двоичной системе счисления. Например:

Четырьмя битами можно представить 16 десятичных чисел (от 0 до 15). В качестве краткой записи при просмотре или изменении двоичных данных используется 16-ричная система счисления. Программы , обеспечивающие «непосредственную» работу человека с данными, хранящимися в памяти компьютера, при взаимодействии с человеком автоматически преобразовывают двоичное представлении данных в 16-ричное и обратно.

Любое данное, записанное в одном байте представляется двумя 16-ричными цифрами, первая из которых соответствует первой четверки битов, а вторая – второй четверки битов. В этом и состоит причина использования 16-ричной системы.